Math, asked by nitishtanti169, 7 months ago

The slope of the tangent to the curve y = x3 - 5x at x = 2 is
(A) 7
(B) 9
(C) 11
(D) None of these​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{Curve is}\;\mathsf{y=x^3-5x}

\textbf{To find:}

\textsf{Slope of tangent of the curve at x=2}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{y=x^3-5x}

\textsf{Differentiate with respect to 'x'}

\mathsf{\dfrac{dy}{dx}=3x^2-5}

\textsf{Now}

\textsf{Slope of tangent at x=2}

\mathsf{=\left(\dfrac{dy}{dx}\right)_{x=2}}

\mathsf{=3(2)^2-5}

\mathsf{=3(4)-5}

\mathsf{=12-5}

\mathsf{=7}

\implies\boxed{\mathsf{Slope\;of\;tangent=7}}

\textbf{Answer:}

\mathsf{Option\;(A)\;is\;correct}

\textbf{Find more:}

If the tangent to the curve y=x(x-1) at the point (a,b) is parallel to the X-axis, then

https://brainly.in/question/17649501

Equation of the tangent to the curve y = 1-e^-x/2 at the point where the curve cuts y axis is

https://brainly.in/question/6188805

Similar questions