Biology, asked by subbu54, 4 months ago

The slope of the tangent to
x = a sint, y = a {cost + log (tan)}. At
the point tis​

Answers

Answered by Anonymous
5

To find the slope of the tangent at the point (x,y) = (asint, a[cost + log(tant)]

We know that slope of a line can be written as :

 \sf \: m =  \dfrac{dy}{dx}

Multiplying and dividing by dt,

 \longrightarrow \sf \: m =  \dfrac{dy}{dx} \:  \times  \dfrac{dt}{dt}  \\  \\  \longrightarrow \sf \: m =  \dfrac{dy}{dt} \:  \times  \dfrac{dt}{dx}

Thus,

 \sf \:  \dfrac{dy}{dt}  \implies \:  \dfrac{d [a \big(cos \: t \:  +  log(tan \: t) \big) ] }{dt}  \\  \\  \sf \:  \dfrac{dy}{dt}  \implies a \dfrac{d(cos \: t)}{dt}  + a \dfrac{d(log(tan \: t))}{dt}  \\  \\  \sf \:  \dfrac{dy}{dt}  \implies - asin(t) \:  + acot(t) \times  \dfrac{d(tan \: t)}{dt}  \\  \\  \sf \:  \dfrac{dy}{dt}  \implies - a sin \: t +  a\dfrac{cos \: t}{sin \: t}  \times  {sec}^{2} t \\  \\  \sf \:  \dfrac{dy}{dt}  \implies \: asec \: t \: cosec \: t - asin \: t -  -  -  -  - (1)

Also,

 \sf \:  \dfrac{dx}{dt}  \implies \:  \dfrac{d(a sin \: t)}{dt} \\  \\   \sf \:  \dfrac{dx}{dt}  \implies \: acos \: t -  -  -  -  - (2)

From (1) and (2),

 \sf \: m =a (sec \: t \: cosec \: t - \: sin \: t )\times  \dfrac{1}{acos \: t}  \\  \\  \longrightarrow  \boxed{ \boxed{\sf \: m = sec  \: t(sec \: t \: cosec \: t - sin \: t)}}

Similar questions