Math, asked by GOLDENGOLDIE, 10 months ago


The slopes of the tangents at the points where
the curve y = x2 - 4x intersects the x-axis is

Answers

Answered by windowpumpkin69
1

Answer:

I still put out my de ye recod for the record

Answered by pintusingh41122
18

The slopes of the tangents at the points where

the curve y = x2 - 4x intersects the x-axis is  -4

​Step-by-step explanation:

Given the curve is \textrm{y}=\textrm{x}^{2} -4\textrm{x}

Differentiating with respect to \textrm{x} we get

\frac{\mathrm{d}\textrm{y}}{\mathrm{d} \textrm{x}}=\frac{\mathrm{d} }{\mathrm{d} \textrm{x}}(\textrm{x}^{2}-4\textrm{x})

or \frac{\mathrm{d}\textrm{y}}{\mathrm{d} \textrm{x}}=\frac{\mathrm{d} }{\mathrm{d} \textrm{x}}\textrm{x}^{2}-\frac{\mathrm{d} }{\mathrm{d} \textrm{x}}}4\textrm{x}

or \frac{\mathrm{d}\textrm{y}}{\mathrm{d} \textrm{x}}=2\textrm{x}-4\times 1

As we know \frac{\mathrm{d} }{\mathrm{d} x}\textrm{x}^{n}=n\textrm{x}^{n-1},\textrm{ n is exponent}

or \frac{\mathrm{d}\textrm{y}}{\mathrm{d} \textrm{x}}=2\textrm{x}-4

curve intersects at x axis so x=0

so we have \frac{\mathrm{d}\textrm{y}}{\mathrm{d} \textrm{x}}=2\times0-4

so \frac{\mathrm{d}\textrm{y}}{\mathrm{d} \textrm{x}}=-4

So slope of the tangent is -4

Similar questions