Math, asked by manchusathvik, 1 year ago

The smallest value of x satisfying the equation √3(cotx+tanx)=4is

Answers

Answered by khiladiak4
0
x=π/6 or π/3 satisfies the equation
Answered by mysticd
4

 Given \:equation : \sqrt{3}(cot x + tan x ) = 4

 \implies \sqrt{3} \Big( \frac{1}{tan x} + tan x \Big) = 4

 \implies \sqrt{3} \Big( \frac{1+tan^{2} x}{tan x}  \Big) = 4

 \implies \sqrt{3} \Big( \frac{sec^{2} x}{tan x}  \Big) = 4

 \implies \sqrt{3} sec^{2} x = 4 tan x

 \implies \sqrt{3} \frac{1}{cos^{2} x }  = 4\times \frac{sin x}{cos x}

 \implies \sqrt{3} =2 \times 2 sin x cos x

 \implies \frac{\sqrt{3}}{2} = sin 2x

 \boxed { \pink {Since, 2sin x cos x = sin 2x }}

 \implies sin \frac{\pi}{3} = 2x

 \implies 2x = n\pi + (-1)^{n} \frac{\pi}{3} , n \in Z

 \implies x = \frac{n\pi}{2} + (-1)^{n} \frac{\pi}{6} , n \in Z

/* To get the smallest value of x , we put n = 0 in the above equation , we get */

 x = \frac{\pi}{6}

Therefore.,

 \red { The \: smallest \: value \: x } \green {= \frac{\pi}{6}}

•••♪

Similar questions