Math, asked by renu4740, 9 months ago

the soln of the pair of the linear equation 3x-4y+11=0 and 7x+11y+15=0​

Answers

Answered by asritadevi2344
40

\red{ \underline \bold{question : 3x - 4y + 11 = 0}} \:  \\  \\ \orange{ \underline \bold{solution     : : : : : >  }} \\  \\ \orange{ \underline \bold{subtract \: from \: both \: sides     : : : : : >  }}  \\  \\   \tt :  \implies \orange{ \underline \bold{(3x - 4y + 11) - 11 = 0 - 11}} \\  \\  \orange{ \underline \bold{remove \: (0)}} \\   \\ \tt :  \implies \:\orange{ \underline \bold{3x - 4y =  - 11}}\\  \\ \orange{ \underline \bold{add \: to \: both \: sides}} \\  \tt :  \implies\orange{ \underline \bold{(3x - 4y) + 4y =  - 11 + 4y}} \\  \\ \orange{ \underline \bold{simpify \: left \: side}} \\  \tt :  \implies \: \orange{ \underline \bold{3x =  - 11 + 4y}} \\  \\ \orange{ \underline \bold{divide \: both \: sides}} \\  \tt :  \implies \:  \orange{ \underline \bold{ \frac{3x}{3} =  \frac{ - 11 + 4y}{3}  }} \\  \\ \orange{ \underline \bold{simplify \: fraction}} \\  \tt :  \implies \: \orange{ \underline \bold{ x = \frac{ - 11 + 4y}{3} }} \\  \\ \orange{ \underline \bold{brack \: up \: fraction}} \\  \\  \tt :  \implies \: \orange{ \underline \bold {x =  -  \frac{  11}{3}  +  4 \times \frac{y}{3}  }}answer......... \\  \\  \\  \\  \\ \red{ \underline \bold{ \: question    : : : :  > 7x + 11y + 15 = 0}} \\  \\ \orange{ \underline \bold{solution}} \\  \\ \orange{ \underline \bold{subtract \: 11y \: from \: both \: sides \: and \: remove(0)}} \\  \\  \tt : \implies \: \orange{ \underline \bold{7x + 15 =  - 11y}} \\  \\ \orange{ \underline \bold{subtract \: 15 \: from \: both \: sides}} \\  \\  \tt :  \implies \: \orange{ \underline \bold{7x =  - 11y - 15}} \\  \\ \orange{ \underline \bold{divide \: both \: sides \: by \: 7}} \\  \\  \tt :  \implies \:\orange{ \underline \bold{x =  \frac{ - 11y \:  - 15}{7} }} \\ itz \: shiwam.............
Answered by zahaansajid
34

Answer:

Solution of the pair of linear equations 3x - 4y + 11 = 0 and

                                                                    7x + 11y + 15 = 0 is

x = \dfrac{-181}{61}

y = \dfrac{32}{61}

Step-by-step explanation:

\implies We can find the solutions of a pair linear equations by substitution or elimination method

\implies Here I'm gonna use elimination method

\implies In this method, we make the co-efficient of either x or y equal then cancel them out

\implies 3x - 4y + 11 = 0     -------(1)

(1) * 11 \implies 33x - 44y + 121 = 0    -------(3)

\implies 7x + 11y + 15 = 0     -------(2)

(2) * 4 \implies 28x + 44y + 60 = 0    -------(4)

(3) + (4) \implies 33x - 44y + 121 + 28x + 44y + 60 = 0 + 0

\implies 61x + 181 = 0

\implies 61x = -181`

\implies x = \dfrac{-181}{61}

Substituting this value in (1) we get,

3 * \dfrac{-181}{61} - 4y + 11 = 0

\implies  4y = \dfrac{-543+11*61}{61}=\dfrac{671-543}{61}=\dfrac{128}{61}

\implies  y = \dfrac{128}{61 * 4}=\dfrac{32}{61}

Similar questions