Math, asked by marvindkumar2330, 2 months ago

The solution of D.E. (2D² - D-10)y = 0 is

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{(2D^2-D-10)y=0}

\underline{\textbf{To find:}}

\textsf{Solution of the given differential equation}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{(2D^2-D-10)y=0}

\textsf{Characteristic equation is}

\mathsf{2m^2-m-10=0}

\mathsf{2m^2-5m+4m-10=0}

\mathsf{m(2m-5)+2(2m-5)=0}

\mathsf{(m+2)(2m-5)=0}

\mathsf{m=-2,\dfrac{5}{2}}

\implies\textsf{Roots are real and distinct}

\textsf{The solution is}

\mathsf{y=A\,e^{m_1\,x}+B\,e^{m_2\,x}}

\mathsf{y=A\,e^{(-2)\,x}+B\,e^{\dfrac{5}{2}\,x}}

\boxed{\bf\,y=A\,e^{-2x}+B\,e^{\dfrac{5x}{2}}}

Similar questions