Math, asked by pratikadam0100, 2 months ago

The solution of Differential equation dy/dx =secx - y 10x is​

Answers

Answered by mathdude500
7

Appropriate Question :-

Solve the Differential equation :-

\rm :\longmapsto\:\dfrac{dy}{dx} = secx \:  -  \: y \: tanx

\large\underline{\sf{Solution-}}

Given differential equation is

\rm :\longmapsto\:\dfrac{dy}{dx} = secx \:  -  \: y \: tanx

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx}  +  \: y \: tanx= secx \:

Its a linear differential equation,

So, on comparing with

\rm :\longmapsto\:\dfrac{dy}{dx}  +  \: py= q \: \: where \: p \: and \: q \:  \in \: f(x)

\rm :\longmapsto\:p = tanx

and

\rm :\longmapsto\:q = secx

Now, Integrating factor is

\rm :\longmapsto\:IF =  {e} \: ^{\displaystyle\int\tt \: p \: dx}

\rm :\longmapsto\:IF =  {e} \: ^{\displaystyle\int\tt \: tanx \: dx}

\rm :\longmapsto\:IF =  {e}^{log \: secx}

\red{\bigg \{ \because \:\displaystyle\int\tt \: tanx \: dx = log \: secx \:  +  \: c \bigg \}}

\rm :\implies\:IF = secx

\red{\bigg \{ \because \: {e}^{logx}   = x\bigg \}}

So,

Solution of Linear Differential equation is

\rm :\longmapsto\:y \times IF = \displaystyle\int\tt \: (q \times IF) \: dx

\rm :\longmapsto\:y \times secx = \displaystyle\int\tt \: secx \times secx \: dx

\rm :\longmapsto\:y \: secx = \displaystyle\int\tt \:  {sec}^{2}x \: dx

\rm :\longmapsto\:y \: secx = tanx + c

Hence,

Solution of differential equation

\bf :\longmapsto\:\dfrac{dy}{dx} = secx \:  -  \: y \: tanx

is

\bf :\longmapsto\:y \: secx = tanx + c

Similar questions