the solution of differential equations sec2 y
Answers
Answered by
0
Answer:
iven, sec
2
x⋅tanydx+sec
2
y⋅tanxdy=0
On separating the varaibales, we get
⇒sec
2
x⋅tanydx=−sec
2
y⋅tanxdy
⇒
tanx
sec
2
x
dx=−
tany
sec
2
y
dy
On integration both the sides, we get
∫
tanx
sec
2
x
dx=−∫
tany
sec
2
y
dy
Let tanx=u⇒sec
2
x=
dx
du
⇒dx=
sec
2
x
du
and tany=v
⇒sec
2
y=
dy
dv
⇒dy=
sec
2
y
dv
∴∫
u
sec
2
x
⋅
sec
2
x
du
=−∫
v
sec
2
y
⋅
sec
2
y
dv
⇒∫
u
du
=∫
v
dv
⇒log∣u∣=−log∣v∣+log∣C∣
⇒log∣tanx∣=−log∣tany∣+log∣C∣
⇒log∣tanx⋅tany∣=log∣C∣
(∵logm+logn=logmn)
(∵
Step-by-step explanation:
Similar questions