The solution of dy/dx + y = y²cosx is
Answers
Answer:
dy/dx +ycosx = yⁿsin2x
Multiplying the whole equation by y-ⁿ
y-ⁿ(dy/dx) + y¹-ⁿcosx = sin2x ……(1)
The above is the Bernoulli's differential equation which is linear in y.
Put u=y¹-ⁿ
du/dx = (1-n)y-ⁿ(dy/dx)
So, (1/(1-n))(du/dx) = y-ⁿ(dy/dx)
Substitute in the eqn.(1)
(1/(1-n))(du/dx) + ucosx = sin2x
du/dx +(1-n)cosx.u=(1-n)sin2x
This is linear in u, so the solution is
IF =e^[ ∫(1-n)cosxdx]=e^[(1-n)sinx]
So, solution is
u(IF)= ∫Q(IF)dx + C
u[e^[(1-n)sinx]]= ∫[(1-n)sin2x.e^[(1-n)sinx]]dx + c
ue^[(1-n)sinx]=(1-n) ∫[e^[(1-n)sinx].sin2xdx + c
z= ∫[e^[(1-n)sinx]sin2xdx
sinx = t
Cosx dx =dt
I= ∫[e^[(1-n)t]2tdt
I=2[t ∫e^[(1-n)t]dt - ∫D(t) ∫e^[(1-n)t]dtdt]
I=2[t(e^[(1-n)t])/(1-n)]-2 ∫1.[[e^[(1-n)t]]/(1-n)]dt
I=[2te^[(1-n)t]/(1-n)] -(2/(1-n)) ∫e^[(1-n)t]dt
I=[2te^[(1-n)t]]/(1-n) - [2/(1-n)²]e^[(1-n)t] + c
I=[2sinxe^[(1-n)sinx]]/(1-n) - [2/(1-n)²]e^[(1-n)sinx] + c
So the solution is
ue^[(1-n)sinx]=(1-n) ∫[e^[(1-n)sinx].sin2xdx + c
ue^[(1-n)sinx]=(1-n)[2sinxe^[(1-n)sinx]]/(1-n) - [2/(1-n)²]e^[(1-n)sinx] + c
ue^[(1-n)sinx]=2sinx.e^[(1-n)sinx] - [2/(1-n)]e^[(1-n)sinx]+c
Multiply by e^[(n-1)sinx]
u=2sinx-(2/(1-n)) + ce^[(n-1)sinx]
But u=y¹-ⁿ
y¹-ⁿ= 2sinx +[2/(n-1)]+ ce^[(n-1)sinx]
Multiply by (n-1)
(n-1)y¹-ⁿ=2(n-1)sinx + 2 + c(n-1)e^[(n-1)sinx]