Math, asked by yashparkar79, 1 month ago

The solution of the equation cos^2 theta+ sin theta +1 = 0 lies in
the interval.​

Answers

Answered by Mathkeeper
0

Step-by-step explanation:

We have,

 \tt{ cos^{2} ( \theta) +  sin( \theta)  + 1 = 0 } \\

 \sf{  \implies \: 1 - sin^{2} ( \theta) +  sin( \theta)  + 1 = 0 } \\

 \sf{  \implies \:  - sin^{2} ( \theta) +  sin( \theta)  + 2 = 0 } \\

 \sf{  \implies \:  sin^{2} ( \theta)  -   sin( \theta)   - 2 = 0 } \\

 \sf{  \implies \:  sin^{2} ( \theta)  -  2 sin( \theta) + sin (\theta)   - 2 = 0 } \\

 \sf{  \implies \:  \sin( \theta) \{ sin( \theta)  -  2  \}+1 \{ sin (\theta)   - 2  \}= 0 } \\

 \sf{  \implies \: \{  \sin( \theta) +1 \} \{ sin (\theta)   - 2  \}= 0 } \\

 \sf{  \implies \:  \sin( \theta) +1 = 0 \:  \: or \:  \:   sin (\theta)   - 2  = 0 } \\

 \sf{  \implies \:  \sin( \theta) =  - 1  \:  \: or \:  \:   sin (\theta)    =  2   } \\

But sin(x) \in[-1,1], so,

 \sf{  \implies \:  \sin( \theta) =  - 1  } \\

 \sf{  \implies \:   \theta=  (4n + 3) \frac{\pi}{2}   \:  \:  \:  \:  \:  \:, \forall \: n \in \mathbb{Z} } \\

Similar questions