Math, asked by itspanther904, 1 month ago

The solution of the equation x/4 + x/2 = ⅛ is​

Answers

Answered by TwilightShine
3

Answer :-

  • The solution of the equation x/4 + x/2 = 1/8 is 1/6.

Step-by-step explanation :-

 \longmapsto\sf \dfrac{x}{4}  +  \dfrac{x}{2}  =  \dfrac{1}{8}

Taking the LCM of 2 and 4,

  \longmapsto\sf\dfrac{x \times 1 + x \times 2}{4}  =  \dfrac{1}{8}

On simplifying,

 \longmapsto \sf\dfrac{x + 2x}{4}  =  \dfrac{1}{8}

Adding 2x to x,

  \longmapsto\sf\dfrac{3x}{4}  =  \dfrac{1}{8}

On cross multiplying the fractions,

 \longmapsto\sf8 \: (3x) = 4 \: (1)

Removing the brackets,

 \longmapsto\sf8 \times 3x = 4 \times 1

On simplifying,

 \longmapsto\sf24x = 4

Transposing 24 from LHS to RHS, changing it's sign,

 \longmapsto\sf x  =  \dfrac{4}{24}

Reducing 4/24 to it's simplest form,

\longmapsto \sf x =  \dfrac{1}{6}

-----------------------------------------------------------

V E R I F I C A T I O N

  • To check our answer, let's put 1/6 in the place of x and see whether LHS = RHS.

LHS

 \longrightarrow\rm \dfrac{x}{4}  +  \dfrac{x}{2}

\longrightarrow \rm \dfrac{ \frac{1}{6} }{4}  +  \dfrac{ \frac{1}{6} }{2}

 \longrightarrow\dfrac{1}{6}  \times  \dfrac{1}{4}  +  \dfrac{1}{6}  \times  \dfrac{1}{2}

  \longrightarrow\rm\dfrac{1}{24}  +  \dfrac{1}{12}

\longrightarrow\dfrac{1 \times 1 + 1 \times 2}{24}

  \longrightarrow\rm\dfrac{1 + 2}{24}

 \longrightarrow\dfrac{3}{24}

 \longrightarrow\dfrac{1}{8}

RHS

\longrightarrow\dfrac{1}{8}

 \\

LHS = RHS.

Hence verified!

________________________________

Similar questions