Math, asked by diksha9329, 1 month ago

The solution of the inequality 2a < a – 4 ≤ 3a + 8 is

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given linear inequality is

\rm :\longmapsto\:2a &lt; a - 4 \leqslant 3a  + 8

Consider,

\red{\rm :\longmapsto\:2a &lt; a - 4}

On Subtracting 'a' from both sides, we get

\red{\rm :\longmapsto\:2a - a &lt; a - a - 4}

\red{\rm :\longmapsto\:a &lt;  - 4 -  -  -  - (1)}

Now, Consider,

\purple{\rm :\longmapsto\:a - 4 \leqslant 3a + 8}

On Subtracting 3a from both sides, we get

\purple{\rm :\longmapsto\:a - 4 - 3a \leqslant 3a + 8 - 3a}

\purple{\rm :\longmapsto\: - 4 - 2a \leqslant 8}

On Adding 4 both sides, we get

\purple{\rm :\longmapsto\: - 4 - 2a + 4 \leqslant 8 + 4}

\purple{\rm :\longmapsto\:  - 2a \leqslant 12}

\purple{\rm :\longmapsto\:  a \geqslant  - 6 -  -  -  - (2)}

From equation (1) and (2), we concluded that

\bf\implies \: - 6 \leqslant a &lt;  - 4

\bf\implies \:a \:  \in \: [ \:  - \:  6, \:  -  \: 4)

Additional Information :-

\red{ \boxed{ \sf{ \:x &gt;  - y \:  \:  \implies \:  - x &lt; y}}}

\blue{ \boxed{ \sf{ \:x  &lt;   - y \:  \:  \implies \:  - x  &gt;  y}}}

\green{ \boxed{ \sf{ \:x   \leqslant    - y \:  \:  \implies \:  - x   \geqslant   y}}}

\pink{ \boxed{ \sf{ \:x   \geqslant    - y \:  \:  \implies \:  - x   \leqslant   y}}}

\red{ \boxed{ \sf{ \: |x| &lt; y \:  \:  \implies \:  - y &lt; x &lt; y}}}

\blue{ \boxed{ \sf{ \: |x|  \leqslant  y \:  \:  \implies \:  - y  \leqslant  x  \leqslant  y}}}

\green{ \boxed{ \sf{ \: |x|  \geqslant  y \:  \:  \implies \:  - y  \geqslant  x  \geqslant  y}}}

Similar questions