Math, asked by swarupwaghmode, 9 months ago

The solution of the linear equations
2x + 4y - 1 = 0 and x + y = 1 is​

Answers

Answered by Anonymous
1

Step-by-step explanation:

    2x + 4y - 1 = 0

=> 2x + 4y  = 1     ................... (i)

    x + y = 1  ..........  x 2

=> 2x + 2y = 2      ................ (ii)

Now, subtracting (ii) from (i)

    2x  +  4y = 1

-   2x  +  2y = 2    

             2y  = -1

=>           y  = -1/2           ( Ans)

∴     x + y = 1

=>     x + (-1/2) = 1

=>       x  =  1 - (-1/2)

=>       x  = 1 + 1/2

=>        x =  3/2               (Ans)

HOPE THIS IS HELPFUL !!! : )

Answered by ajay8949
1

\sf\bold\pink{By\:using\:Elemination\:Method\::-}

2x + 4y - 1 = 0 ------------- 1

x + y - 1 = 0 ------------- 2

In equation 2,

x + y - 1 = 0

multiplying both sides by 2

2x + 2y - 2 = 0 -------------3

subtracting equation 3 from equation 1

( 2x + 4y - 1 ) - ( 2x + 2y - 2 ) = 0 - 0

2x + 4y - 1 - 2x - 2y + 2 = 0

2y + 1 = 0

Y = \fbox\color{red}{-1/2}

substituting value of Y in equation 2,

x + Y - 1 = 0

x + (-1/2) - 1 = 0

x - 1/2 - 1 = 0

x = \fcolorbox{red}{yellow}{-3/2}

Similar questions