Math, asked by janak7520, 7 months ago

The solution of the quadratic
equation.

x² - 20x - 44 = 0 is __________.​

Answers

Answered by nallurisowjanypi4gn8
0

Answer:

(x + 2)(x - 22)

Step-by-step explanation:

please mark as brainliest if my answer is correct

Attachments:
Answered by yaduvendrasingh95
0

Step-by-step explanation:

1

Use the quadratic formula

=

±

2

4

2

x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}

x=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

2

2

0

4

4

=

0

x^{2}-20x-44=0

x2−20x−44=0

=

1

a={\color{#c92786}{1}}

a=1

=

2

0

b={\color{#e8710a}{-20}}

b=−20

=

4

4

c={\color{#129eaf}{-44}}

c=−44

=

(

2

0

)

±

(

2

0

)

2

4

1

(

4

4

)

2

1

x=\frac{-({\color{#e8710a}{-20}}) \pm \sqrt{({\color{#e8710a}{-20}})^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-44}})}}{2 \cdot {\color{#c92786}{1}}}

x=2⋅1−(−20)±(−20)2−4⋅1(−44)

2

Simplify

Evaluate the exponent

Multiply the numbers

=

2

0

±

4

0

0

4

1

(

4

4

)

2

1

x=\frac{20 \pm \sqrt{400{\color{#c92786}{-4}} \cdot {\color{#c92786}{1}}({\color{#c92786}{-44}})}}{2 \cdot 1}

x=2⋅120±400−4⋅1(−44)

=

2

0

±

4

0

0

+

1

7

6

2

1

x=\frac{20 \pm \sqrt{400+{\color{#c92786}{176}}}}{2 \cdot 1}

x=2⋅120±400+176

Add the numbers

Evaluate the square root

Multiply the numbers

=

2

0

±

2

4

2

x=\frac{20 \pm 24}{2}

x=220±24

3

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.

=

2

0

+

2

4

2

x=\frac{20+24}{2}

x=220+24

=

2

0

2

4

2

x=\frac{20-24}{2}

x=220−24

4

Solve

Rearrange and isolate the variable to find each solution

=

2

2

x=22

x=22

=

2

x=-2

x=−2

Solution

=

2

2

=

2

Similar questions