Math, asked by yogitaparmar6301, 2 months ago

The solution set of In(5 – 7x) <1 is given by:
(-10,7)
All real numbers​

Answers

Answered by mathdude500
2

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{{\bf \:  log(x)  \: is \: defined \: when \: x &gt; 0}}

\boxed{{\bf \:  log_{y}(x)   &lt;  z \implies \: x  &lt;   {y}^{z} }}

\boxed{{\bf \:  log(x)  =  log_{e}(x)}}

\large\underline{\bf{Solution-}}

\rm :\longmapsto\: log(5 - 7x)  &lt; 1

can be rewritten as

\rm :\longmapsto\: log_{e}(5 - 7x)  &lt; 1

Case :- 1

\rm :\longmapsto\:5 - 7x &gt; 0

\rm :\longmapsto\: - 7x &gt;  - 5

\bf\implies \:x &lt; \dfrac{5}{7}  -  -  - (1)

Case :- 2

\rm :\longmapsto\: log_{e}(5 - 7x)  &lt; 1

\rm :\implies\:5 - 7x &lt;  {e}^{1}

\rm :\longmapsto\:5 - 7x &lt; e

\rm :\longmapsto\: - 7x &lt; e - 5

\rm :\implies\:x &gt; \dfrac{5 - e}{7}  -  -  - (2)

So,

On combining equation (1) and (2), we get

\bf\implies \:x \:  \in \:  \bigg(\dfrac{5 - e}{7}  \:  , \:  \dfrac{5}{7}  \bigg)

Similar questions