Math, asked by mohitshrma008, 8 months ago

The solution set of ln(5-7x)<=1 is given by

Answers

Answered by shadowsabers03
9

Given inequality is,

\longrightarrow\ln(5-7x)\leq1

Taking antilog,

\longrightarrow e^{\ln(5-7x)}\leq e^1

\longrightarrow 5-7x\leq e

Multiplying both sides by -1, (Note the sign change)

\longrightarrow 7x-5\geq -e

Adding 5,

\longrightarrow 7x\geq5-e

Dividing by 7, we get,

\longrightarrow x\geq\dfrac{5-e}{7}

\Longrightarrow x\in\left[\dfrac{5-e}{7},\ \infty\right)\quad\quad\dots(1)

But we know \ln(x) is only defined for x&gt;0.

So for \ln(5-7x) being defined,

\longrightarrow 5-7x&gt;0

Multiplying both sides by -1, (Note the sign change)

\longrightarrow 7x-5&lt;0

Adding 5,

\longrightarrow 7x&lt;5

Dividing by 7, we get,

\longrightarrow x&lt;\dfrac{5}{7}

\Longrightarrow x\in\left(-\infty,\ \dfrac{5}{7}\right)\quad\quad\dots(2)

Combining (1) and (2),

\longrightarrow x\in\left(-\infty,\ \dfrac{5}{7}\right)\cap\left[\dfrac{5-e}{7},\ \infty\right)

\longrightarrow\underline{\underline{x\in\left[\dfrac{5-e}{7},\ \dfrac{5}{7}\right)}}

This is the solution set of the inequality.

Similar questions