Math, asked by ashtan1, 2 days ago

The solution set of...
options
a {5}
b {625}
c {25}
d {3125}​

Attachments:

Answers

Answered by user0888
6

\large\text{\underline{Formula}}

The power in the given question can be regarded as,

\begin{aligned}a^{\log_{b}c}&=a^{\frac{\log_{a}c}{\log_{a}b}}\\&=(a^{\log_{a}c})^{\frac{1}{\log_{a}b}}\\&=(a^{\log_{a}c})^{\log_{b}a}\\&=c^{\log_{b}a}}.\end{aligned}

We get,

\cdots\longrightarrow a^{\log_{b}c}=c^{\log_{b}a}.

\large\text{\underline{Solution}}

Now to solve the problem, we apply the formula on one power.

We know that,

\cdots\longrightarrow2^{\log_{5}x}=x^{\log_{5}{2}}.

Now, let us solve the exponential equation.

\cdots\longrightarrow 3x^{\log_{5}2}-x^{\log_{5}{2}}=64

\cdots\longrightarrow 2x^{\log_{5}2}=64

\cdots\longrightarrow x^{\log_{5}2}=32

If we take the \log of base 5,

\cdots\longrightarrow \log_{5}(x^{\log_{5}2})=\log_{5}(2^{5})

\cdots\longrightarrow\log_{5}2\log_{5}x=5\log_{5}2

\cdots\longrightarrow \log_{5} x=5.

We know that,

\cdots\longrightarrow x=5^{5}=3125.

\large\text{\underline{Answer}}

Choice D. {3125} is the correct answer.

\large\text{\underline{Extra! Question}}

Simplify \large a^{\frac{\log(\log a)}{\log a}}(a>1).

(Formula)

Consider an equation, \log_{a}b=x.

Then, a^{x}=b.

If we take \log of base c(c>0,c\neq1) on both sides,

\cdots\longrightarrow\log_{c}a^{x}=\log_{c}b

\cdots\longrightarrow x\log_{c}a=\log_{c}b

\cdots\longrightarrow x=\dfrac{\log_{c}b}{\log_{c}a}.

We get,

\cdots\longrightarrow \log_{a}b=\dfrac{\log_{c}b}{\log_{c}a}.

(Solution)

We know that,

\cdots\longrightarrow\dfrac{\log (\log a)}{\log a}=\log_{a}(\log a).

So,

\cdots\longrightarrow a^{\log_{a}(\log a)}=\log a.

Similar questions