Math, asked by YagneshTejavanth, 1 month ago

The solution set of the equation 4sin θ cos θ - 2cos θ - 2√3sin θ + √3 = 0 in the interval (0,2π) is​

Answers

Answered by pulakmath007
9

SOLUTION

TO DETERMINE

The solution set of the equation

4sin θ cos θ - 2cos θ - 2√3sin θ + √3 = 0

in the interval (0,2π)

EVALUATION

Here the given equation is

4sin θ cos θ - 2cos θ - 2√3sin θ + √3 = 0

We now solve for θ as below

4sin θ cos θ - 2cos θ - 2√3sin θ + √3 = 0

⇒ 2cos θ ( 2sin θ - 1 ) - √3 ( 2sin θ - 1 ) = 0

⇒ ( 2sin θ - 1 ) ( 2cos θ - √3 ) = 0

Now 2sin θ - 1 = 0 gives

\displaystyle\sf{2 \sin \theta = 1}

\displaystyle\sf{ \implies \:  \sin \theta =  \frac{1}{2} }

\displaystyle\sf{ \implies \:  \sin \theta = \sin \:  \frac{\pi}{6} }

\displaystyle\sf{ \implies \:   \theta =  \:  \frac{\pi}{6} \:  \: and \:  \:  \frac{5\pi}{6}  \:  \:  \big( \because \:  \theta \:  \in \:  (0,2\pi) \big)  }

Again ( 2cos θ - √3 ) = 0 gives

\displaystyle\sf{ \: 2 \cos \theta =  \sqrt{3} }

\displaystyle\sf{ \implies \: \cos \theta =  \frac{ \sqrt{3} }{2} }

\displaystyle\sf{ \implies \: \cos \theta =   \cos \:  \frac{\pi}{6}  }

\displaystyle\sf{ \implies \:  \theta =   \:  \frac{\pi}{6}  \:  \: and \:  \frac{11\pi}{6} \:  \:  \big( \because \:  \theta \:  \in \:  (0,2\pi) \big)  }

FINAL ANSWER

Hence the required solution is

 \boxed{ \:  \: \displaystyle\sf{  \:  \theta =   \:  \frac{\pi}{6}  \: ,  \:  \frac{5\pi}{6}   \: , \: \frac{11\pi}{6} \:  \:  \big(  \: where \:  \theta \:  \in \:  (0,2\pi) \big)  } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Answered by srivatsancarz
3

Answer:

SOLUTION

TO DETERMINE

The solution set of the equation

4sin θ cos θ - 2cos θ - 2√3sin θ + √3 = 0

in the interval (0,2π)

EVALUATION

Here the given equation is

4sin θ cos θ - 2cos θ - 2√3sin θ + √3 = 0

We now solve for θ as below

4sin θ cos θ - 2cos θ - 2√3sin θ + √3 = 0

⇒ 2cos θ ( 2sin θ - 1 ) - √3 ( 2sin θ - 1 ) = 0

⇒ ( 2sin θ - 1 ) ( 2cos θ - √3 ) = 0

Now 2sin θ - 1 = 0 gives

Again ( 2cos θ - √3 ) = 0 gives

FINAL ANSWER

Hence the required solution is

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

Step-by-step explanation:

Similar questions