Math, asked by majjishivanireddy712, 2 months ago

The solution Set of the in equation VX2 +6x+5>8-x
is​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

➢ Given inequality is

\rm :\longmapsto\: \sqrt{ {x}^{2}  + 6x + 5}  > 8 - x

Now, for inequality to be exist,

\rm :\longmapsto\: {x}^{2}  + 6x + 5 \geqslant 0

\rm :\longmapsto\: {x}^{2}  + 5x + x + 5 \geqslant 0

\rm :\longmapsto\:x(x + 5) + 1(x + 5) \geqslant 0

\rm :\longmapsto\:(x + 5)(x + 1) \geqslant 0

\bf\implies \:x \leqslant  - 5 \:  \: or \:  \: x \geqslant  - 1 -  -  - (1)

Now,

Consider the given inequality,

\rm :\longmapsto\: \sqrt{ {x}^{2}  + 6x + 5}  > 8 - x

On squaring both sides, we get

\rm :\longmapsto\: {x}^{2}  + 6x + 5 >  {(8 - x)}^{2}

\rm :\longmapsto\: {x}^{2}  + 6x + 5 >  64 +  {x}^{2}  - 16x

\rm :\longmapsto\: 6x + 5 >  64 - 16x

\rm :\longmapsto\:6x + 16x > 64 - 5

\rm :\longmapsto\:22x > 59

\bf\implies \:x  >  \dfrac{59}{22}  -  -  - (2)

So, from equation (1) and (2), we concluded that

\bf\implies \:x  >  \dfrac{59}{22}

\bf\implies \:x \:  \in \: \bigg(\dfrac{59}{22}, \:  \infty \bigg)

Additional Information :-

Let us consider two real numbers a and b such that a > b,

\rm :\longmapsto\:(x - a)(x - b) < 0 \implies \: b < x < a

\rm :\longmapsto\:(x - a)(x - b)  \leqslant  0 \implies \: b  \leqslant  x  \leqslant  a

\rm :\longmapsto\:(x - a)(x - b) >  0 \implies \: x < b \:  \: or \:  \: x > a

\rm :\longmapsto\:(x - a)(x - b)  \geqslant   0 \implies \: x  \leqslant  b \:  \: or \:  \: x  \geqslant  a

Similar questions