Math, asked by poojithakoduru123, 9 months ago

the solution set of (x2+1/x2)-5(x+1/x) +6=0 is​

Answers

Answered by shadowsabers03
13

We have to find the solution set of the equation,

\longrightarrow\sf{\left(x^2+\dfrac{1}{x^2}\right)-5\left(x+\dfrac{1}{x}\right)+6=0\quad\quad\dots(1)}

Let,

\longrightarrow\sf{x+\dfrac{1}{x}=k}

On squaring both sides,

\longrightarrow\sf{\left(x+\dfrac{1}{x}\right)^2=k^2}

\longrightarrow\sf{x^2+2\cdot x\cdot\dfrac{1}{x}+\dfrac{1}{x^2}=k^2}

\longrightarrow\sf{x^2+\dfrac{1}{x^2}+2=k^2}

\longrightarrow\sf{x^2+\dfrac{1}{x^2}=k^2-2}

Then (1) becomes,

\longrightarrow\sf{\left(k^2-2\right)-5k+6=0}

\longrightarrow\sf{k^2-5k+4=0}

\longrightarrow\sf{k^2-k-4k+4=0}

\longrightarrow\sf{k(k-1)-4(k-1)=0}

\longrightarrow\sf{(k-1)(k-4)=0}

\Longrightarrow\sf{k=1\quad OR\quad k=4}

\longrightarrow\sf{x+\dfrac{1}{x}=1\quad OR\quad x+\dfrac{1}{x}=4}

Case 1:- Let \sf{x+\dfrac{1}{x}=1.}

\longrightarrow\sf{\dfrac{x^2+1}{x}=1}

\longrightarrow\sf{x^2+1=x}

\longrightarrow\sf{x^2-x+1=0}

\Longrightarrow\sf{x=\dfrac{1\pm\sqrt{(-1)^2-4\times1\times1}}{2\times1}}

\longrightarrow\sf{x=\dfrac{1\pm\sqrt{1-4}}{2}}

\longrightarrow\sf{x=\dfrac{1\pm\sqrt{-3}}{2}}

\longrightarrow\sf{x=\dfrac{1\pm i\sqrt{3}}{2}}

Case 2:- Let \sf{x+\dfrac{1}{x}=4.}

\longrightarrow\sf{\dfrac{x^2+1}{x}=4}

\longrightarrow\sf{x^2+1=4x}

\longrightarrow\sf{x^2-4x+1=0}

\Longrightarrow\sf{x=\dfrac{4\pm\sqrt{(-4)^2-4\times1\times1}}{2\times1}}

\longrightarrow\sf{x=\dfrac{4\pm\sqrt{16-4}}{2}}

\longrightarrow\sf{x=\dfrac{4\pm\sqrt{12}}{2}}

\longrightarrow\sf{x=\dfrac{4\pm2\sqrt{3}}{2}}

\longrightarrow\sf{x=2\pm\sqrt{3}}

Hence the solution set is,

\longrightarrow\textsf{$\underline{\underline{\mathsf{x\in\left\{\dfrac{1\pm i\sqrt3}{2},\ 2\pm\sqrt3\right\}}}}$}

For \sf{x\in\mathbb{R},}

\longrightarrow\underline{\underline{\sf{x\in\left\{2\pm\sqrt3\right\}}}}


Steph0303: Great Answer :)
Answered by maabasha9573
0

Answer:

(x^2+1/x^2)-5(x+1/x)+6=0

Similar questions