Math, asked by ashishtopno45, 1 month ago

the some of the two rational numbers is -5 if one of the number is 2/3 find the other..​

Answers

Answered by TwilightShine
5

Answer :-

  • The other number is -17/3.

To find :-

  • The other rational number.

Step-by-step explanation :-

  • It is given that the sumof two rational numbers is -5 and one of the numbers is 2/3. We have to find the other number.

Let :-

  • The other number be "x".

Then :-

  • The sum of 2/3 and x will be -5.

Therefore,

 \longmapsto  \sf\dfrac{2}{3}  + x =  - 5

  \sf\longmapsto x =  - 5 -  \dfrac{2}{3}

  \sf\longmapsto x =  \dfrac{( - 5 \times 3) -(2 \times 1) }{3}

  \sf\longmapsto x =  \dfrac{ - 15 - 2}{3}

  \sf\longmapsto x =  \dfrac{ - 17}{ \:  \:  \:  \: 3}

-----------------------------------------------------------

V E R I F I C A T I O N

  • To check our answer, let's add 2/3 and -17/3 add see whether their sum is -5.

 \implies\tt\dfrac{2}{3}  +  \dfrac{ - 17}{ \:  \:  \:  \: 3}

 \implies\tt\dfrac{2 + ( - 17)}{3}

 \implies\tt \dfrac{ - 15}{ \:  \:  \:  \: 3}

 \implies\tt- 5

 \\

The sum of 2/3 and -17/3 is -5.

Hence verified!

________________________________

Answered by NewGeneEinstein
0

Answer:

Given:-

  • The sum of two rational numbers is -5
  • One number is 2/3

To find:-

Other number

Solution:-

Let it be x

ATQ

\\ \tt{:}\Rrightarrow x+\dfrac{2}{3}=-5

\\ \tt{:}\Rrightarrow x=-5-\dfrac{2}{3}

\\ \tt{:}\Rrightarrow x=\dfrac{-15-2}{3}

\\ \tt{:}\Rrightarrow x=\dfrac{-17}{3}

Thus the other rational number is -17/3.

Similar questions