Physics, asked by shaunnn3406, 5 months ago

The specific resistance of a wire if its length is 100cm and cross sectional area is 0.0020squarecm and resistance is 5 Ohms

Answers

Answered by BrainlyIAS
18

Length of the wire (l) = 100 cm = 1 m

Are of cross section (A) = 0.002 cm²

                                       = 0.002 × 10⁻⁴ m²

                                     = 2 × 10⁻³ × 10⁻⁴ m²

                                       = 2 × 10⁻⁷ m²

Resistance of the wire (R) = 5 Ω

Specific resistance of the wire / Resistivity = ρ Ω-m

\bigstar\ \; \bf \pink{R=\dfrac{\rho l}{A} }

where ,

  • R denotes resistance
  • ρ denotes specific resistance/resistivity
  • l denotes length
  • A denotes cross sectional area

Plugging values we get ,

\to \sf R=\dfrac{\rho l}{A}

\to \sf 5=\dfrac{\rho (1)}{2\times 10^{-7}}

\to \sf \rho =10\times 10^{-7}\ \Omega .m\ \; \; \\\\\to \sf \rho=1\times 10^{-6}\ \Omega.m\ \; \orange{\bigstar}


TheMoonlìghtPhoenix: Awesome!
Answered by Anonymous
16

Answer:

  • The specific resistance of a wire is \sf{ 1 × 10^{-6} \Omega m.}

Explanation:

Given that,

  • Length of wire (l) = 100cm ↪1m.
  • Cross sectional area (A) = 0.002 cm² ↪ \sf{ 2 × 10^{-7} m^2}
  • Resistance (R) = 5 \Omega

As we know that,

 \red \bigstar \: { \boxed {\sf{ R = \frac{\rho l}{A} }}}\: \:

[ Putting values ]

 \sf \:  \leadsto \: 5 =  \frac{ \rho  \times  1}{2 \times 10 {}^{ - 7} }  \\   \\  \sf  \:  \leadsto \rho \:  = 5 \times 2 \times 10 {}^{7}   \: \Omega m \\  \\ \sf  \:  \leadsto  \rho \:   = 10 \times 10 {}^{ - 7}  \Omega \: m \\ \\ \leadsto \sf \underbrace{ \rho = 1  \times 10^{-6} \Omega m} \: \: \green \bigstar


TheMoonlìghtPhoenix: Perfect!
Similar questions