Physics, asked by xaviererediauwa, 6 months ago

The speed of a bus increases uniformly from 10m/s to 50m/s in 12s. calculate the distance travelled during the entire period.

Answers

Answered by VishnuPriya2801
49

Answer:-

Given:

Initial Velocity (u) = 10 m/s

Final velocity (v) = 50 m/s

Time (t) = 12 s.

We know that,

v = u + at

[ a is the acceleration ]

So,

⟶ 50 = 10 + (a) (12)

⟶ 50 - 10 = 12a

⟶ 40/12 = a

⟶ 3.33 m/s² = a

Now,

using second equation of motion,

⟶ S = ut + (1/2) * at²

⟶ S = (10)(12) + (1/2)(3.33)(12)²

⟶ S = 120 + 239.76

⟶ S = 359.76 m

The distance travelled by the bus is 359.76 m.


BrainlyPopularman: Awesome
Answered by Anonymous
214

Given :

  • The speed of a bus increases uniformly from 10m/s to 50m/s in 12s.

To Find :

  • Calculate the distance travelled during the entire period

Solution :

Concept :

  • The second equation of motion gives the displacement of an object under constant acceleration:

  :  \implies \:  \:  \: \:  \:  \:  \boxed{ \sf \:v = u + at}

Substitute all values :

  :  \implies \:  \:  \: \:  \:  \:  \sf \:50= 10+ 12a \\  \\  \\   :  \implies \:  \:  \: \:  \:  \:  \sf \:50 - 10 = 12a \\  \\  \\   :  \implies \:  \:  \: \:  \:  \:  \sf \:40 = 12a \\  \\  \\   :  \implies \:  \:  \: \:  \:  \:  \sf \:a =  \cancel{ \frac{40}{12}}\\  \\  \\   :  \implies \:  \:  \: \:  \:  \:  \sf \:a = 3.33

   \\  \\ :  \implies \:  \:  \: \:  \:  \:  \boxed{ \sf \:s= ut + \frac{1}{2}  a {t}^{2} }

Substitute all values :

   \\  \\ :  \implies \:  \:  \: \:  \:  \:   \sf \:s= 10 \times 12+ \frac{1}{2}   \times 3.33 \times  {12}^{2}  \\  \\  \\ :  \implies \:  \:  \: \:  \:  \:   \sf \:s= 120 +  \frac{1}{  \cancel{2}}  \times 3.33 \times \cancel{ 144} \\  \\  \\ :  \implies \:  \:  \: \:  \:  \:   \sf \:s= 120 + 239.76 \\  \\  \\ :  \implies \:  \:  \: \:  \:  \:   \sf \:s= 359.76

The distance travelled by the bus is 359.76 m.


BrainlyPopularman: Good
Anonymous: Nice!
Similar questions