Physics, asked by ravan4371o, 1 month ago

the speed of a car of mass 2000kg increases from 50m/s to 70m/s.caluculate the change in momentum.

Answers

Answered by Anonymous
12

Firstly let us understand the concept!

✴️ We know that, momentum, p is the product of mass, m and velocity, v of a body. Momentum is a vector quantity. Momentum can be negative too. The SI unit of momentum is kg m/s.

Change in momentum: To calculate the change in momentum we have to find initial and final momentum then we have to subtract final momentum and initial momentum.

Now let's begin!

Provided that:

  • Mass of the car = 2000 kg.
  • Initial velocity = 50 mps.
  • Final velocity = 70 mps.

To calculate:

  • The change in momentum

Solution: The change in momentum = 40,000 kg m/s

Using concepts:

  • Initial momentum formula
  • Final momentum formula
  • Change in momentum formula

Using formulas:

Initial momentum formula:

  • {\small{\underline{\boxed{\pmb{\sf{p \: = mu}}}}}}

Final momentum formula:

  • {\small{\underline{\boxed{\pmb{\sf{p' \: = mv}}}}}}

Change in momentum formula:

  • {\small{\underline{\boxed{\pmb{\sf{\Delta \: = p' - p}}}}}}

Where, m denotes mass, u denotes initial velocity, v denotes final velocity, p denotes initial momentum, p' denotes final momentum and p denotes change in momentum.

Required solution:

✡️ Firstly by using formula to calculate initial momentum let us find out the initial momentum.

{\sf{:\implies p \: = mu}}\\

{\sf{:\implies p \: = 2000(50)}}\\

{\sf{:\implies p \: = 1,00,000 \: kg \: ms^{-1}}}\\

{\sf{:\implies Initial \: momentum \: = 1,00,000 \: kg \: ms^{-1}}}\\

\quad \quad{\pmb{\sf{\underline{Therefore, \: initial \: momentum \: = 1,00,000 \: kg \: ms^{-1}}}}}

✡️ Now by using formula to calculate final momentum let us find out the final momentum.

{\sf{:\implies p' \: = mv}}\\

{\sf{:\implies p' \: = 2000(70)}}\\

{\sf{:\implies p' \: = 1,40,000 \: kg \: ms^{-1}}}\\

\quad \quad{\pmb{\sf{\underline{Therefore, \: final \: momentum \: = 1,40,000 \: kg \: ms^{-1}}}}}

✡️ Now by using change in momentum formula let us solve this whole question!

{\sf{:\implies \Delta p \: = mv - mu}}\\

{\sf{:\implies \Delta p \: = p' - p}}\\

{\sf{:\implies \Delta p \: = 1,40,000 - 1,00,000}}\\

{\sf{:\implies \Delta p \: = 40,000 \: kg \: ms^{-1}}}

\quad \quad{\pmb{\sf{\underline{Therefore, \: change \: in \: momentum \: = 40,000 \: kg \: ms^{-1}}}}}

Answered by Anonymous
30

Question:

  • the speed of a car of mass 2000kg increases from 50m/s to 70m/s.caluculate the change in momentum.

Answer:

  • The change in momentum is 40,000 kgm /s

Explanation:

Given that:

  • the speed of a car of mass 2000kg increases from 50m/s to 70m/s.

To calculate:

  • The change in momentum

Formula used:

{\bigstar \; {\underline{\boxed{\bf{\triangle \vec{ P} = \vec{P_1} - \vec{P_2} }}}}}

Required solution:

  • Using formula to find momentum

{\leadsto\; {\pink{\boxed{\bf{\vec{ P} = {m}  \vec{v} }}}}}

Where,

  • \vec{\sf P } Stands for momentum
  • M Stands for mass of the body
  • \vec{\sf v } Stands for velocity

Here,

  • The change in momentum will be

{\leadsto\; {\pink{\boxed{\bf{\vec{ P} = {m}  \vec{v_2} -{m}  \vec{v_1}  }}}}}

we know that ,

  • Mass of the truck is 2,000 kg
  • Velocity ₁ of the truck is 50 m/s
  • Velocity ₂ of the truck is 70 m/s

Plugging in the values,

  • Let's firstly find out the initial momentum

{:\implies}\sf P_1 = mv_1

{:\implies}\sf P_1 = 2,000 kg \times 50 m/s

{:\implies}\sf P_1 = 1,00,000 kgm/s

  • Henceforth the initial momentum of the truck is 1,00,000 kgm/s

~ Now let's find the final momentum of the truck

{:\implies}\sf P_2 = mv_2

{:\implies}\sf P_2 = 2,000kg\times 70 m/s

{:\implies}\sf P_2 = 1,40,000 kgm/s

\;\; \;\; \;\; {\pmb{\sf{ Now ,\; Let's \: find\: the\; change \;in\; momentum}}}

~ Subtract initial momentum from the final momentum

{:\implies}\sf \triangle P_{change}= mv_2 - mv_1

{:\implies}\sf \triangle P_{change}= 1,40,000kgm/s- 1,00,000kgm/s

{:\implies}\sf \triangle P_{change}= 40,000 kgm/s

Therefore,

  • The change in momentum of the truck is 40,000 kgm/s

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions