Physics, asked by coolanubhav3333, 9 months ago

The speeds of a particle performing linear S.H.M. are 8 cm/s and 6 cm/s at respective displacements of 6 cm and 8 cm. Find its period and amplitude.

Answers

Answered by nirman95
72

Given:

The speeds of a particle performing linear S.H.M. are 8 cm/s and 6 cm/s at respective displacements of 6 cm and 8 cm.

To find:

Time period and amplitude ?

Calculation:

General expression for velocity of a SHM particle:

 \boxed{ \bold{ \therefore \: v =  \omega \sqrt{ {A}^{2}  -  {x}^{2} } }}

In 1st case:

 \rm \therefore \: v =  \omega \sqrt{ {A}^{2}  -  {x}^{2} }

 \rm \implies \: 8=  \omega \sqrt{ {A}^{2}  -  {6}^{2} }

 \rm \implies \: 8=  \omega \sqrt{ {A}^{2}  -  36 }   \:  \:  \:  \:  \:  \:  \: ......(1)

In 2nd case:

 \rm \therefore \: v =  \omega \sqrt{ {A}^{2}  -  {x}^{2} }

 \rm \implies \: 6=  \omega \sqrt{ {A}^{2}  -  {8}^{2} }

 \rm \implies \: 6=  \omega \sqrt{ {A}^{2}  -  64 }  \:  \:  \:  \:  \:  \:  \: .......(2)

Dividing the equations:

 \therefore \:  \dfrac{8}{6}  =  \dfrac{ \sqrt{ {A}^{2}  -  36 } }{ \sqrt{ {A}^{2}  - 64} }

 \implies \:  \dfrac{64}{36}  =  \dfrac{  {A}^{2}  -  36  }{ {A}^{2}  - 64}

  \rm\implies \: 64 {A}^{2}  - 4096 = 36 {A}^{2}  - 1296

  \rm\implies \:28 {A}^{2}   = 2800

  \rm\implies \: {A}^{2}   = 100

  \rm\implies \: A   = 10 \: cm

So, amplitude is 10 cm.

 \rm  \therefore \: 8=  \omega \sqrt{ {A}^{2}  -  36 }   \:  \:  \:  \:  \:  \:  \: ......(1)

 \rm  \implies \: 8=  \omega \sqrt{ {(10)}^{2}  -  36 }

 \rm  \implies \: 8=  \omega \sqrt{64}

 \rm  \implies \: 8=  8\omega

 \rm  \implies \:\omega  = 1 \: hz

So, time period:

 \rm \therefore \: T =  \dfrac{2\pi}{ \omega}

 \rm \implies \: T =  \dfrac{2\pi}{1}

 \rm \implies \: T =  2\pi \: sec

So, time period is 2π seconds.

Answered by inglevitthal816
4

answer

T= 6.284 s is the answer hope it's helpful

Similar questions