The spring constant of a fixed beam having length (L), modulus of elasticity(E) and area moment of inertia (I) subjected to load W at mid-point is
Answers
Answer:
Hypermetropia can be corrected by convex lens. A convex lens converges the incoming light such that the image is formed on the retina. An object at 25 cm forms an image at the near point of the hypermetropic eye. Here, near point is 1 m. Given, Object distance,u=-25 cm Image distance, v=-100 cm 1. From lens formula, V 1
Explanation:
Hypermetropia can be corrected by convex lens. A convex lens converges the incoming light such that the image is formed on the retina. An object at 25 cm forms an image at the near point of the hypermetropic eye. Here, near point is 1 m. Given, Object distance,u=-25 cm Image distance, v=-100 cm 1. From lens formula, V 1
Hypermetropia can be corrected by convex lens. A convex lens converges the incoming light such that the image is formed on the retina. An object at 25 cm forms an image at the near point of the hypermetropic eye. Here, near point is 1 m. Given, Object distance,u=-25 cm Image distance, v=-100 cm 1. From lens formula, V 1
Hypermetropia can be corrected by convex lens. A convex lens converges the incoming light such that the image is formed on the retina. An object at 25 cm forms an image at the near point of the hypermetropic eye. Here, near point is 1 m. Given, Object distance,u=-25 cm Image distance, v=-100 cm 1. From lens formula, V 1