Math, asked by eklavyachavda5, 3 days ago

The square of 4x-5y is​

Answers

Answered by llAestheticKingll91
10

Step-by-step explanation:

16x2−40xy+25y2

We have, (4x−5y)2=(4x)2−2(4x)(5y)+(5y)2

=16x2−40xy+25y2

Answered by Itzintellectual
2

Answer:

4x² + 5y² - 40xy

Step-by-step explanation:

(4x - 5y) {}^{2}  \\  \\  { \tt {Derivations}} \begin{cases}   { \rm\red{(a - b) {}^{2} }}\\  { \rm \red{(a + b) {}^{2} }} \end{cases} \\  \\ \: {\tt \green{(a - b) {}^{2} }}  \:  \:  \:  \:   \tt \blue  {   \implies} \: a {}^{2}  + b {}^{2}  - 2ab \\  \: {\tt \green{(a  +  b) {}^{2} }}  \:  \:  \:  \:   \tt \blue  {   \implies} \: a {}^{2}  + b {}^{2}   +  2ab \\  \\  \\  \rm \: (4x - 5y) {}^{2}  \\  \\  \implies4x {}^{2}  + 5y {}^{2}  - 2(4x \times 5y) \\  \\  \implies4x {}^{2}  + 5y {}^{2}  - 2 \times 20xy \\  \\  \implies4x {}^{2}  + 5y {}^{2}  - 40xy

So the answer of your question is 4x² + 5y² - 40xy.

Other examples:-

  • (2x + 3y) ²

(2x + 3y) {}^{2}  \\  \\  { \tt {Derivations}} \begin{cases}   { \rm\red{(a - b) {}^{2} }}\\  { \rm \red{(a + b) {}^{2} }} \end{cases} \\  \\ \: {\tt \green{(a - b) {}^{2} }}  \:  \:  \:  \:   \tt \blue  {   \implies} \: a {}^{2}  + b {}^{2}  - 2ab \\  \: {\tt \green{(a  +  b) {}^{2} }}  \:  \:  \:  \:   \tt \blue  {   \implies} \: a {}^{2}  + b {}^{2}   +  2ab \\  \\  \\  \rm \: (2x + 3y) {}^{2}  \\  \\  \implies2x {}^{2}  + 3y {}^{2}  + 2(2x \times 3y) \\  \\  \implies2x {}^{2}  + 3y {}^{2}  + 2 \times 6xy \\  \\  \implies2x {}^{2}  + 3y {}^{2}  - 12xy

Thanks

Similar questions