Math, asked by jiya4976, 7 months ago

The square of the greater of two consecutive even no.s exceeds the square of the smaller by 36. find the no.s
By explanation​

Answers

Answered by Anonymous
20

&lt;!DOCTYPE html&gt;</p><p>&lt;html&gt;</p><p>&lt;font colour="red"&gt;</p><p>&lt;body&gt;</p><p>&lt;h1&gt;Answer :&lt;/h1&gt;</p><p>&lt;/font&gt;</p><p>&lt;/body&gt;</p><p>&lt;html&gt;

Given :

2 Consecutive even square numbers.

Difference = 36.

According to the question :

Let the numbers be n , n + 2 ( even )

Their squares will be = n^2 , ( n + 2 )^2

Equation :

☞ ( n + 2 )^2 = n^2 + 36

☞ n^2 + 4n + 4 = n^2 + 36 ( cancel n^2 and n^2 )

☞ 4n + 4 = 36

☞ 4n = 36 - 4

☞ 4n = 32

☞ n = 32 / 4

n = 8.

so, Another number = ( n + 2 )

☞ ( 8 + 2 )

10.

Therefore, the consecutive

even numbers are 8 and

10.

&lt;marquee&gt;&lt;b&gt;&lt;font colour="red"&gt;☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺

Similar questions