Math, asked by lahare661, 9 months ago

The. square of the hypotenuse of a right angled isosceles triangle is 288 cm find the length of the legs

Answers

Answered by MaheswariS
10

\textbf{Given:}

\textsf{The square of the hypotenuse of a right angled isoceles triangle}

\mathsf{is\;288\cm}

\textbf{To find:}

\textsf{Sides of the isoceles triangle}

\textbf{Solution:}

\textsf{Let the length of the equal side of the isocles triangle be "a"}

\textsf{As per given data,}

\mathsf{(Hypotenuse)^2=288\;cm}

\textsf{But, by Pythagoras theorem}

\mathsf{a^2+a^2=(Hypotenuse)^2}

\mathsf{2\;a^2=288}

\mathsf{a^2=\dfrac{288}{2}}

\mathsf{a^2=144}

\mathsf{a=\sqrt{144}}

\implies\mathsf{a=12\;cm}

\therefore\textsf{legss of the triangle are 12 cm and 12 cm}

Answered by Anonymous
11

\textbf{Given:}

\textsf{The square of the hypotenuse of a right angled isoceles triangle}

\mathsf{is\;288 cm}

\textbf{To find:}

\textsf{Sides of the isoceles triangle}

\textbf{Solution:}

\textsf{Let the length of the equal side of the isocles triangle be "a"}

\textsf{As per given data,}

\mathsf{(Hypotenuse)^2=288\;cm}

\textsf{But, by Pythagoras theorem}

\mathsf{a^2+a^2=(Hypotenuse)^2}

\mathsf{2\;a^2=288}

\mathsf{a^2=\dfrac{288}{2}}

\mathsf{a^2=144}

\mathsf{a=\sqrt{144}}

\implies\mathsf{a=12\;cm}

\therefore\textsf{legss of the triangle are 12 cm and 12 cm}

Similar questions