The square root of 4 - 4c + 2b + c2
- bc + b2
/4 is
A) b/2 - c + 2
B) b + c - 2
C) b/2 + c - 2
D) b - c + 2
Answers
Find more:
Square root of polynomial m^4+6m^3+11m^2+6m+1
https://brainly.in/question/11769927
Square root of 0.289 / 0.00121
https://brainly.in/question/5411647
Answer:
Expression is
\mathsf{4-4c+2b+c^2-bc+\dfrac{b^2}{4}}4−4c+2b+c
2
−bc+
4
b
2
\underline{\textsf{To find:}}
To find:
\textsf{Square root of}Square root of
\mathsf{4-4c+2b+c^2-bc+\dfrac{b^2}{4}}4−4c+2b+c
2
−bc+
4
b
2
\underline{\textsf{Solution:}}
Solution:
\mathsf{Consider,}Consider,
\mathsf{4-4c+2b+c^2-bc+\dfrac{b^2}{4}}4−4c+2b+c
2
−bc+
4
b
2
\textsf{Using the identity,}Using the identity,
\boxed{\mathsf{a^2-2ab+b^2=(a-b)^2}}
a
2
−2ab+b
2
=(a−b)
2
\mathsf{=4-4c+2b+\left(\dfrac{b}{2}-c\right)^2}=4−4c+2b+(
2
b
−c)
2
\mathsf{=4+4\left(\dfrac{b}{2}-c\right)+\left(\dfrac{b}{2}-c\right)^2}=4+4(
2
b
−c)+(
2
b
−c)
2
\mathsf{=\left(\dfrac{b}{2}-c\right)^2+2\left(\dfrac{b}{2}-c\right)(2)+4}=(
2
b
−c)
2
+2(
2
b
−c)(2)+4
\mathsf{=\left(\left(\dfrac{b}{2}-c)+2\right)^2}
\mathsf{=\left(\dfrac{b}{2}-c+2\right)^2}=(
2
b
−c+2)
2
\implies\mathsf{4-4c+2b+c^2-bc+\dfrac{b^2}{4}=\left(\dfrac{b}{2}-c+2\right)^2}⟹4−4c+2b+c
2
−bc+
4
b
2
=(
2
b
−c+2)
2
\textsf{Taking square root on bothsides, we get}Taking square root on bothsides, we get
\mathsf{\sqrt{4-4c+2b+c^2-bc+\dfrac{b^2}{4}}=\dfrac{b}{2}-c+2}
4−4c+2b+c
2
−bc+
4
b
2
=
2
b
−c+2
\therefore\textsf{option (A) is correct}∴option (A) is correct
Find more:
Square root of polynomial m^4+6m^3+11m^2+6m+1
https://brainly.in/question/11769927
Square root of 0.289 / 0.00121
https://brainly.in/question/5411647