World Languages, asked by selva0997, 6 months ago

the square root of 4m(square)-24m +36 is ___(a)4(m-3) (b)2 ( m-3) (c) (2m-3)square (d) m-3<br />​

Answers

Answered by ItzAviLegend
3

Answer:

Option d is the right answer

Answered by Anonymous
1

Answer:

Step by step solution :STEP1:Equation at the end of step 1 (22m2 - 24m) + 36 = 0 STEP2:STEP3:Pulling out like terms

 3.1     Pull out like factors :

   4m2 - 24m + 36  =   4 • (m2 - 6m + 9) 

Trying to factor by splitting the middle term

 3.2     Factoring  m2 - 6m + 9 

The first term is,  m2  its coefficient is  1 .

The middle term is,  -6m  its coefficient is  -6 .

The last term, "the constant", is  +9 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 9 = 9 

Step-2 : Find two factors of  9  whose sum equals the coefficient of the middle term, which is   -6 .

     -9   +   -1   =   -10     -3   +   -3   =   -6   That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -3  and  -3 

                     m2 - 3m - 3m - 9

Step-4 : Add up the first 2 terms, pulling out like factors :

                    m • (m-3)

              Add up the last 2 terms, pulling out common factors :

                    3 • (m-3)

Step-5 : Add up the four terms of step 4 :

                    (m-3)  •  (m-3)

             Which is the desired factorization

Similar questions