Math, asked by vismaya15, 6 months ago

The square root of 5-12i is?​

Answers

Answered by aritra7125
1

Step-by-step explanation:

Suppose that a+bi is a square root of 5 + 12i. Then, (a+bi)^2 = (a^2 - b^2) + (2ab)i = 5 + 12i. 2ab = 12 ==> b = 6/a.

Answered by varadad25
10

Answer:

The square root of the given complex number is

\displaystyle{\boxed{\red{\sf\:\sqrt{5\:-\:12i}\:=\:\pm\:(\:\pm\:3\:\mp\:2\:i\:)}}}

Step-by-step-explanation:

The given complex number is 5 - 12i.

We have to find the square root of this complex number.

The square root of a complex number a + bi is another complex number x + yi.

Let the square root of 5 - 12i be a complex number a + bi.

\displaystyle{\sf\:\therefore\:\sqrt{5\:-\:12i}\:=\:a\:+\:bi}

\displaystyle{\implies\sf\:5\:-\:12i\:=\:(\:a\:+\:bi\:)^2\:\qquad\cdots[\:Squaring\:both\:sides\:]}

\displaystyle{\implies\sf\:5\:-\:12i\:=\:a^2\:+\:2ab\:i\:+\:(\:bi\:)^2}

\displaystyle{\implies\sf\:5\:-\:12i\:=\:a^2\:+\:2ab\:i\:+\:b^2\:i^2}

\displaystyle{\implies\sf\:5\:-\:12i\:=\:a^2\:+\:2ab\:i\:-\:b^2}

\displaystyle{\implies\sf\:5\:-\:12i\:=\:a^2\:-\:b^2\:+\:2ab\:i}

Comparing both sides, we get,

\displaystyle{\sf\:a^2\:-\:b^2\:=\:5}

\displaystyle{\implies\sf\:a^2\:=\:b^2\:+\:5\:\quad\:\cdots\:(\:1\:)}

\displaystyle{\sf\:2ab\:=\:-\:12}

\displaystyle{\implies\sf\:ab\:=\:-\:\cancel{\dfrac{12}{2}}}

\displaystyle{\implies\sf\:ab\:=\:-\:6}

\displaystyle{\implies\sf\:a\:=\:-\:\dfrac{6}{b}\:\quad\:\cdots\:(\:2\:)}

By substituting this value in equation ( 1 ), we get,

\displaystyle{\sf\:a^2\:=\:b^2\:+\:5}

\displaystyle{\implies\sf\:\left(\:-\:\dfrac{6}{b}\:\right)^2\:=\:b^2\:+\:5}

\displaystyle{\implies\sf\:\dfrac{36}{b^2}\:=\:b^2\:+\:5}

\displaystyle{\implies\sf\:\dfrac{36}{b^2}\:-\:b^2\:=\:5}

\displaystyle{\implies\sf\:\dfrac{36\:-\:b^4}{b^2}\:=\:5}

\displaystyle{\implies\sf\:36\:-\:b^4\:=\:5b^2}

\displaystyle{\implies\sf\:b^4\:+\:5b^2\:-\:36\:=\:0}

\displaystyle{\implies\sf\:b^4\:+\:9b^2\:-\:4b^2\:-\:36\:=\:0}

\displaystyle{\implies\sf\:b^2\:(\:b^2\:+\:9\:)\:-\:4\:(\:b^2\:+\:9\:)\:=\:0}

\displaystyle{\implies\sf\:(\:b^2\:+\:9\:)\:(\:b^2\:-\:4\:)\:=\:0}

\displaystyle{\implies\sf\:b^2\:+\:9\:=\:0\:\quad\:OR\:\quad\:b^2\:-\:4\:=\:0}

\displaystyle{\implies\sf\:b^2\:=\:-\:9\:\quad\:OR\:\quad\:b^2\:=\:4}

\displaystyle{\implies\boxed{\sf\:b\:=\:\pm\:3i}\sf\:\quad\:OR\:\quad\:\boxed{\sf\:b\:=\:\pm\:2}}

But, b is a real number.

∴ b = ± 3i is unacceptable.

\displaystyle{\therefore\:\underline{\boxed{\pink{\sf\:b\:=\:\pm\:2}}}}

By substituting this value in equation ( 2 ), we get,

\displaystyle{\sf\:a\:=\:-\:\dfrac{6}{b}}

\displaystyle{\implies\sf\:a\:=\:-\:\dfrac{\cancel{6}}{\pm\:\cancel{2}}}

\displaystyle{\implies\sf\:a\:=\:-\:(\:\pm\:3\:)}

\displaystyle{\implies\underline{\boxed{\blue{\sf\:a\:=\:\mp\:3}}}}

∴ The square root of the given complex number is

\displaystyle{\sf\:\sqrt{5\:-\:12i}\:=\:\pm\:(\:-\:3\:+\:2\:i\:)\:\quad\:OR\:\quad\:\sqrt{5\:-\:12i}\:=\:\pm\:(\:3\:-\:2\:i\:)}

\displaystyle{\underline{\boxed{\red{\sf\:\sqrt{5\:-\:12i}\:=\:\pm\:(\:\pm\:3\:\mp\:2\:i\:)}}}}

Similar questions