Math, asked by mdsoheb4885, 11 months ago

The standard form of (33−2i)(2+3i)/(1+2i)(2−i)​

Answers

Answered by pritikasahu8576
6

Answer:

132+95i/4+3i

Step-by-step explanation:

(66+99i-4i+6)/(2-i+4i+2)=(132+95i)/(4+3i)

Answered by aakashsingh2000
1

Answer:

573+164i/25

Step-by-step explanation:

(33-2i)(2+3i)/(1+2i)(2-1)

⇒ simply the equation by multiplying

⇒ 66+99i-4i-6i²/2-i+4i-2i²

72+95i/4+3i                                        (use i²= -1)

⇒now multliply both numerator and denominator by 4-3i

(72+95i)*(4-3i)/(4+3i)*(4-3i)

⇒(72*4)-(72*3i)+(95i*4)-(95*3i²)/16-9i²                       (use i²= -1)

⇒288-216i+380i+285/16+9                              

⇒ 573+164i/25 is the answer

Similar questions