the study of X-Ray and microscope in physics helped us in a great deal in
Answers
Answer:
our eyes could detect super-energetic forms of radiation such as X rays, looking at our friends would be an altogether more surreal experience: we'd be able to see straight through their skin and watch their bones jiggling about underneath! Perhaps it's fortunate that we don't have that kind of ability—but we can still enjoy the benefits of using X rays all the same: they're hugely important in medicine, scientific research, astronomy, and industry. Let's take a closer look at what X rays are, how they work, and how we make them!
Photo: Once X rays had to be treated like old-fashioned photographs. Now, they're as easy to study and store as digital photographs on computer screens. Photo by Kasey Zickmund courtesy of U.S. Air Force.
Advertisement
What are X rays?
Imagine you had the job of redesigning light to make it a bit more powerful—so you could see through bodies, buildings, and anything else you fancied. You might come up with something a bit like X rays.
X rays are a kind of super-powerful version of ordinary light: a higher-energy form of electromagnetic radiation that travel at the speed of light in straight lines (just like light waves do). If you could pin X rays down on a piece of paper and measure them, you'd find their wavelength (the distance between one wave crest and the next) was thousands of times shorter than that of ordinary light. That means their frequency (how often they wiggle about) is correspondingly greater. And, because the energy of electromagnetic waves is directly related to their frequency, X rays are much more energetic and penetrating than light waves as well. So here's the most important thing you need to remember: X rays can travel through things that ordinary light waves can't because they're much more energetic.
Artwork: The electromagnetic spectrum, with the X-ray band highlighted in yellow over toward the right. You can see that X rays have shorter wavelengths, higher frequencies, and higher energy than most other types of electromagnetic radiation, and don't penetrate Earth's atmosphere. Their wavelengths are around the same scale as atomic sizes. Artwork courtesy of NASA (please follow this link for a bigger and clearer version of this image).