Math, asked by jyothi01021990, 10 months ago

the sum a pf the first three term of an ap is 33 if the product of first term and thirs etrm exceeds the 2nd term by 29 then find the ap​

Answers

Answered by kuldeep20941
5

Answer:

A.P. = 20 , 11 , 2.....

A.P. = 2 , 11 , 20....

Step-by-step explanation:

=====================================

SEE THE ATTACHMENT MY FRIEND....

=====================================

Attachments:
Answered by Anonymous
24

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

The sum of the the first three term of an A.P. is 33, If the product of first term and third term exceeds the 2nd term by 29.

\bf{\red{\underline{\bf{To\:find\::}}}}

The arithmetic progression.

\bf{\red{\underline{\bf{Explanation\::}}}}

Let the first three terms be ;

  • (a-d)
  • a
  • (a+d)

A/q

\longrightarrow\sf{(a-d)+a+(a+d)=33}\\\\\longrightarrow\sf{a\cancel{-d}+a+a \cancel{+d}=33}\\\\\longrightarrow\sf{3a=33}\\\\\longrightarrow\sf{a=\cancel{\dfrac{33}{3} }}\\\\\longrightarrow\sf{\blue{a=11}}

&

\longrightarrow\sf{(a-d)(a+d)=a+29}\\\\\longrightarrow\sf{a^{2} \cancel{+ad-ad}-d^{2} =a+29}\\\\\longrightarrow\sf{a^{2} -d^{2} =a+29}\\\\\longrightarrow\sf{(11)^{2} -d^{2} =11+29\:\:\:[\therefore a=11]}\\\\\longrightarrow\sf{121-d^{2} =40}\\\\\longrightarrow\sf{-d^{2} =40-121}\\\\\longrightarrow\sf{\cancel{-}d^{2} =\cancel{-}81}\\\\\longrightarrow\sf{d^{2} =81}\\\\\longrightarrow\sf{d=\pm\sqrt{81} }\\\\\longrightarrow\sf{\blue{d=\pm9}}

Thus;

\dag\:\boxed{\bf{\overline{\mid{Arithmetic\:progression\mid}}}}}

For + ve common difference use :

\bullet{\sf{(a-d)=(11-9)=\boxed{2}}}}\\\bullet{\sf{(a)=\boxed{11}}}}\\\bullet{\sf{(a+d)=(11+9)=\boxed{20}}}}

For - ve common difference use :

\bullet{\sf{(a-d)=[11-(-9)]=[11+9]=\boxed{20}}}}\\\bullet{\sf{(a)=\boxed{11}}}}\\\bullet{\sf{(a+d)=[11+(-9)]=[11-9]=\boxed{2}}}}


Anonymous: Splendid ♡
Anonymous: धन्यवाद ! ^_~
Anonymous: Fantastic :D
Anonymous: धन्यवाद ! shivi :)
Similar questions