Physics, asked by ctaraknath21, 2 months ago

The sum and difference of two vectors A and B are B = 2 î+6j+ k and A-B=4i+2j-11 k. Find A x B.​

Answers

Answered by Anonymous
13

Given:-

  • A+B= 2i + 6j + k + 4i - 2j - 11k
  • A-B= 4i - 2j - 11k

To Find:-

  • A.B

Solution:-

A+B + A - B = 2i + 6j + k + 4i  - 2j - 11k

 =  >2 A = 6i + 8j - 10k

 =  > A = 3i + 4j - 5k

Now,

 =  > A+B= 2i+6j+k

 =  >B= 2i+6j+k -  A

 =  >B= 2i+6j+k - 3i  -  4j  + 5k

 =  >B=  -  i - 2 j+ 6k

Magnitude of Vector A=  \sqrt{ {3}^{2} +  {4}^{2}  +  { - 5}^{2}  }

 =  >  \sqrt{9 + 16 + 25}  =  \sqrt{50}

Magnitude of Vector B= \sqrt{ { - 1}^{2}  +  { - 2}^{2} +  {6}^{2}  }

 =  >  \sqrt{1 + 4+ 36}  =  \sqrt{41}

Scalar Product of A.B=  ( 3i + 4j - 5k).( -i-2j+6k )

 =  >  - 3 + 8 - 30

 =  >  - 25

Similar questions