Math, asked by pksingh7978, 10 months ago

The sum and,product of the roots of the quadratic equation 3x2-9x+5=0 is

Answers

Answered by Anonymous
15

Given quadratic equation,

 {3x}^{2}  - 9x + 5 \:  =  \: 0

Let,

  • a = 3
  • b = -9
  • c = 5

Sum of the zeros : α + ß = -b/a = -(-9)/3 = 9/3 = 3

Product of the zeros : αß = c/a = 5/3

Hence, it is solved....

i \: hope \: it \: hepls \: you \:  \: ....

Step-by-step explanation:

þLÈÄ§È MÄRK ħ ßRÄÌñLÌȧ†

Answered by amansharma264
6

 \large \bold \green{ \underline{answer}} \\  \\ \implies \bold{sum \:  \: of \:  \: roots \:  \:  =  \:  \frac{ - b}{a} = 3 } \\  \\ \implies \bold{product \:  \: of \:  \: roots \:  =  \:  \frac{c}{a} =  \frac{5}{3}  } \\  \\ \implies \bold \green{explanation} \\  \\ \implies \bold{3 {x}^{2} - 9x + 5 } \\  \\ \implies \bold{sum \:  \: of \:  \: roots \:  \: of \:  \: equation \:  =  \frac{ - b}{a} = 3 } \\  \\ \implies \bold{products \:  \: of \:  \: roots \:  \: of \:  \: equation \:  =  \frac{c}{a} =  \frac{5}{3}  } \\  \\ \implies \bold \green{verification} \\  \\ \implies \bold{formula \:  \: of \:  \: quadratic \:  \: polynomial} \\  \\ \implies  \bold{ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \beta  } \\  \\ \implies \bold{ {x}^{2} - (3)x +  \frac{5}{3} = 0  } \\  \\ \implies \bold{3 {x}^{2} - 9x + 5 = 0 } \\  \\ \implies \bold \green{ \boxed{verified}}

Similar questions