Math, asked by antasd1112, 10 months ago

The sum and product of the zeroes of a quadratic polynomial are 3 and -10 respectively the quadratic polynomial is

Answers

Answered by Anonymous
12

\large{\underline{\bf{\red{Given:-}}}}

  • ✦ sum of zeroes = 3
  • ✦ product of zeroes = -10

\large{\underline{\bf{\red{To\:Find:-}}}}

  • ✦ quadratic polynomial.

\huge{\underline{\bf{\green{Solution:-}}}}

Let α and β be the zeroes of the required polynomial p(x).

Then

  • (α + β) = 3
  • αβ = -10

So,

p(x) = x² -(α + β)x + αβ

➝ p(x) = x² - 3x -10

So, the required polynomial is x² - 3x -10.

Verification:-

Sum of zeroes:-

(α + β) = - b/a

➝ 3 = -(-3)/1

➝ 3 = 3

Product of zeroes:-

αβ = c/a

➝ -10 = -10/1

➝ -10 = -10

LHS = RHS

hence, verified

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
3

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Required \ polynomial \ is \ x^{2}+7x-30.}

\sf\orange{Given:}

\sf{\implies{The \ sum \ and \ product \ of \ the}}

\sf{zeroes \ of \ a \ quadratic \ polynomial \ are}

\sf{3 \ and \ -10.}

\sf\pink{To \ find:}

\sf{Quadratic \ polynomial.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ \alpha \ be \ 3 \ and \ \beta \ be \ -10.}

\sf{Sum \ of \ zeroes=3+(-10)}

\sf{\implies{\therefore{\alpha+\beta=-7...(1)}}}

\sf{Product \ of \ zeroes=3(-10)}

\sf{\implies{\therefore{\alpha\beta=-30...(2)}}}

\sf{Quadratic \ polynomial \ is}

\sf{\implies{x^{2}-(\alpha+\beta)x+(\alpha\beta)}}

\sf{... from \ (1) \ and (2)}

\sf{\implies{x^{2}+7x-30}}

\sf\purple{\tt{\therefore{Required \ polynomial \ is \ x^{2}+7x-30.}}}

\sf\blue{Verification:}

\sf{\implies{x^{2}+7x-30}}

\sf{\implies{x^{2}-3x+10x-30}}

\sf{\implies{x(x-3)+10(x-3)}}

\sf{\implies{(x-3)(x+10)}}

\sf{\implies{\therefore{x=3 \ or \ -10}}}

\sf{\therefore{Zeroes \ are \ 3 \ and \ -10}}

\sf{Hence, \ verified.}

Similar questions