Math, asked by namanrjain2004, 10 months ago

The sum and product of the zeroes of a quadratic polynomial are − 19 /20 and − 3 /10 , respectively. If the coefficient of x^ 2 is 20 , find the quadratic polynomial.

Answers

Answered by Anonymous
58

Given :

  • Sum of zeroes = -19/20
  • Product of zeroes = -3/10

To find :

The quadratic polynomial.

Theory :

if   \sf\alpha \: and \beta are the zeros of a quadratic polynomial

f(x) . Then the polynomial f x is given by

 \sf \:f(x) = k(x {}^{2}  - ( \alpha   +  \beta )x +  \alpha  \beta )

or

 \sf \: f(x) = k(x {}^{2}  - (sum \: of \: the \: zeroes)x + product \: of \: the \: zeroes)

Solution :

Let  \sf  \alpha  \: and \:  \beta are the zeros of the required polynomial.It is given that

 \sf \alpha  +  \beta  = \frac{-19}{20}

 \sf \: and \:  \alpha  \beta  =  \frac{-3}{10}

The quadratic polynomial is

 \sf \: f(x) =k( x {}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta )

 \sf \implies \: f(x) =k( x {}^{2}  - (\frac{-19}{20}) +  \frac{-3}{10})

Taking the LCM:-

\sf\implies\:f(x)=k(\dfrac{20x^{2}+19x-6}{20})

Answered by Anonymous
11

Answer:

Given :

Sum of zeroes = -19/20

Product of zeroes = -3/10

To find :

The quadratic polynomial.

Theory :

if \sf\alpha \: and \betaαandβ are the zeros of a quadratic polynomial

f(x) . Then the polynomial f x is given by

\sf \:f(x) = k(x {}^{2} - ( \alpha + \beta )x + \alpha \beta )f(x)=k(x

2

−(α+β)x+αβ)

or

\sf \: f(x) = k(x {}^{2} - (sum \: of \: the \: zeroes)x + product \: of \: the \: zeroes)f(x)=k(x

2

−(sumofthezeroes)x+productofthezeroes)

Solution :

Let \sf \alpha \: and \: \betaαandβ are the zeros of the required polynomial.It is given that

\sf \alpha + \beta = \frac{-19}{20}α+β=

20

−19

\sf \: and \: \alpha \beta = \frac{-3}{10}andαβ=

10

−3

The quadratic polynomial is

\sf \: f(x) =k( x {}^{2} - ( \alpha + \beta )x + \alpha \beta )f(x)=k(x

2

−(α+β)x+αβ)

\sf \implies \: f(x) =k( x {}^{2} - (\frac{-19}{20}) + \frac{-3}{10})⟹f(x)=k(x

2

−(

20

−19

)+

10

−3

)

Taking the LCM:-

\sf\implies\:f(x)=k(\dfrac{20x^{2}+19x-6}{20})⟹f(x)=k(

20

20x

2

+19x−6

)

Similar questions