Math, asked by shrutiwaikar610, 3 months ago

the sum and product of the zeroes of quadratic polynomial are -¹/2 and -3 respectively . what is quadratic equation​

Answers

Answered by ItzArchimedes
76

Solution :-

Given ,

  • sum of roots or zeroes = -½
  • Product of roots or zeroes = -3

As we know that ,

  • Quadratic polynomial :- - (α+β)x + αβ

Where ,

  • α+β = sum of roots = - ½
  • αβ = Product of roots = -3

Substituting the values we have ,

=> x² - (α+β)x + αβ = 0

=> x² - (-½)x + (-3) = 0

=> x² + x/2 - 3 = 0

=> (2x² + x)/2 - 3 = 0

=> (2x² + x - 6)/2 = 0

=> 2x² + x - 6 = 0

Hence , required quadratic equation is 2x² + x - 6 = 0

Answered by DARLO20
73

\Large\bf\pink{Let,} \\

  • α & β are the zeroes of a quadratic polynomial.

\Large{\underline{\bf{\color{cyan}GiVeN,}}} \\

  • The sum and product of the zeroes of a quadratic polynomial are -¹/ & -3.

\longmapsto\:\:\bf\orange{\alpha\:+\:\beta\:=\:-\dfrac{1}{2}\:} \\

\longmapsto\:\:\bf\green{\alpha\:.\:\beta\:=\:-\:3\:} \\

\Large{\underline{\bf{\color{coral}To\:FiNd,}}} \\

  • The quadratic equation.

\Large{\underline{\bf{\color{lime}CaLcUlAtIoN,}}} \\

\bf\blue{As\:we\:know \:that,} \\

The format of a quadratic equation is,

\red\bigstar\:\:{\underline{\green{\boxed{\bf{\color{peru}x^2\:-\:(\alpha\:+\:\beta)\:x\:+\:\alpha\:\beta\:=\:0\:}}}}} \\

:\implies\:\:\bf{x^2\:-\:\Big(-\dfrac{1}{2}\Big)\:x\:+\:(-\:3)\:=\:0\:} \\

:\implies\:\:\bf{x^2\:+\:\dfrac{1}{2}\:x\:-\:3\:=\:0\:} \\

✅ Multiple 2 in the above equation, we get

:\implies\:\:\bf{2\times{x^2}\:+\:2\times{\dfrac{1}{2}\:x}\:-\:2\times{3}\:=\:0\:} \\

:\implies\:\:\bf\purple{2x^2\:+\:x\:-\:6\:=\:0\:} \\

━─━─━─━─━─━─━─━─━─━─━─━─━─━─━

\Large\bf\blue{Therefore,} \\

The quadratic equation is 2x² + x - 6 = 0.

Similar questions