The sum and product of two numbers are 34 & 128 respectively.Find the numbers.
Answers
Answered by
1
Let the numbers be ;
a & b , then;
a+b = 34
a = 34-b
ab = 128
(34-b)b = 128
34b-b^2 = 128
b^2-34b+128 = 0
(b)^2 - 2.b.17 + (17)^2 - (17)^2 + 128 = 0
(b-17)^2 = 161
b-17 = √161
b = √161 +17
a = 34-√161-17 = 17-√161
a & b , then;
a+b = 34
a = 34-b
ab = 128
(34-b)b = 128
34b-b^2 = 128
b^2-34b+128 = 0
(b)^2 - 2.b.17 + (17)^2 - (17)^2 + 128 = 0
(b-17)^2 = 161
b-17 = √161
b = √161 +17
a = 34-√161-17 = 17-√161
Similar questions