Math, asked by LoveXx, 9 months ago

the sum and product of zeroes of p(x) = 63x^2 - 7x - 9 are S and P respectively.find S and P

plz answer correctly I will mark it brainlist answer .
nd if the answer was wrong then I will report. ​

Answers

Answered by WorstAngeI
2

AnswEr :

\:\bullet\:\sf\ Given \: polynomial = 63x^2 - 7x - 9

\:\bullet\:\sf\ Sum \: of \: zeroes(S) =?

\:\bullet\:\sf\ Product \: of \: zeroes(P) =?

 \rule{100}1

\underline{\bigstar\:\textsf{According \: to \: given \: in \: question:}}

\normalsize\star{\boxed{\sf{Sum \: of \: zeroes = \frac{-(Coefficient \: of  \: x)}{Coefficient \: of \: x^2} }}}

\normalsize\dashrightarrow\sf\ \alpha + \beta = \frac{-b}{a}

\normalsize\dashrightarrow\sf\ \alpha + \beta = \frac{-(-7)}{63}

\normalsize\dashrightarrow\sf\ \alpha + \beta = \frac{\cancel{7}}{\cancel{63}}

\normalsize\dashrightarrow\sf\ \alpha + \beta = \frac{1}{9}

\normalsize\dashrightarrow\sf\ Sum \: of \: zeroes = \frac{1}{9}

\normalsize\dashrightarrow{\underline{\boxed{\frak \red{Sum \: of \: zeroes(S) = \frac{1}{7}}}}}

\normalsize\star{\boxed{\sf{Product \: of \: zeroes = \frac{Constant\: term}{Coefficient \: of \: x^2} }}}

\normalsize\dashrightarrow\sf\ \alpha\beta = \frac{c}{a}

\normalsize\dashrightarrow\sf\ \alpha\beta = \frac{-9}{63}

\normalsize\dashrightarrow\sf\ \alpha\beta = \frac{-1}{7}

\normalsize\dashrightarrow\sf\ Product \: of \: zeroes = \frac{-1}{7}

\normalsize\dashrightarrow{\underline{\boxed{\frak \red{Product \: of \: zeroes(P) = \frac{-1}{7}}}}}

Similar questions