Math, asked by aryanrsengupta48, 10 months ago

the sum and product of zeros of a quadratic polynomial are 3 and -10 respectively. the polynomial is ?

Answers

Answered by amansharma264
13

EXPLANATION

  • GIVEN

Sum of zeroes of quadratic equation =

a + b = 3

Product of zeroes of quadratic equation =

ab = -10

EQUATION OF QUADRATIC POLYNOMIAL

x^2 - (a + b) x + ab

x^2 - 3x -10 = 0 => ANSWER

SOME RELATED FORMULA

For quadratic polynomial

x^2 - (a + b) x + ab

For cubic polynomial

x^3 - ( a + b +c) x^2 + (ab + bc + ca) x - abc

Answered by Anonymous
54

   \:\:\:\:\:\:\:\:\:\:\:\:\:\: \large\mathfrak{\dag \: Given   : }\:\:\:\:\:\:\:\:\:\:\:\:\:\:

  • Sum of Zeroes ( α + β ) = 3
  • Product of Zeroes ( αβ ) = -10
  • Quadratic Polynomial = ?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

   \:\:\:\:\:\:\:\:\:\:\:\:\:\: \large\mathfrak{\dag \: Required \: Solution  : }\:\:\:\:\:\:\:\:\:\:\:\:\:\:

  \\

\underline{\bigstar\:\textsf{According to the given Question :}}\\\\

:\implies\sf Polynomial=x^2-(Sum\:of\:Zeroes)x+Product\:of\:Zeroes\\\\\\:\implies\sf Polynomial=x^2 -(\alpha + \beta)x + ( \alpha \beta)\\\\\\:\implies\sf Polynomial=x^2 - ( 3 )x + (-10)\\\\\\:\implies\underline{\boxed{\sf\pink{ Polynomial=x^2 -3x -10}}}

\therefore\:\underline{\textsf{Required polynomial is  \textbf{x$^\text2$ -3x -10}}}.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━

\rule{180}{1.5}

\boxed{\begin{minipage}{5.5 cm} {$\bigstar\: \textsf{For a Quadratic Polynomial :}}\\\\ {\qquad\sf p(x) = ax$^\sf2$ \sf + bx + c}\\\sf with zeroes \alpha\:\sf and\:\beta \\\\\\ {\textcircled{\footnotesize1}} \:\:\alpha +\beta= \dfrac{ - \:b}{a}\:\:\bigg\lgroup\bf Sum\:of\:Zeroes\bigg\rgroup \\\\\\{\textcircled{\footnotesize2}} \: \:\alpha  \beta= \sf\dfrac{c}{a}\:\:\bigg\lgroup\bf Product\:of\:Zeroes\bigg\rgroup\end{minipage}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀

Similar questions