Math, asked by rajeshgadiya4085, 7 months ago

The sum first 10 terms of an AP is 15 and the sum of next 10 terms of AP is 215.Find the AP

Answers

Answered by Anonymous
86

\bf{\underline{Given:-}}

  • Sum of first ten terms = 15
  • Sum of next ten terms = 215

\bf{\underline{To\:find:-}}

The A.P.

\bf{\underline{Solution:-}}

We know,

\sf{S_n = \dfrac{n}{2}[2a+(n-1)d]}

Sum of first 10 terms = 15

= \sf{S_{10} = \dfrac{10}{2}[2a + (10-1)d]}

\sf{\implies 15 = 5[2a+9d]}

\sf{\implies \dfrac{15}{5} = 2a + 9d}

\sf{\implies 3 = 2a + 9d}

\sf{\implies 2a + 9d = 3 \longrightarrow (i)}

Now,

Sum of next 10 terms = 215

Therefore,

Sum of first 20 terms = 215 + 15 = 230

\sf{S_{20} = \dfrac{20}{2}[2a+(20-1)d]}

\sf{\implies 230 = 10[2a+19d]}

\sf{\implies \dfrac{230}{10} = 2a + 19d}

\sf{\implies 23 = 2a + 19d}

\sf{\implies 2a + 19d = 23\longrightarrow (ii)}

From eq.(i) and eq. (ii),

\sf{\:\:\:\:\:2a + 9d = 3}

\sf{\:\:\:\:\:2a + 19d = 23}

\sf{\underline{(-)\:\:\:\:(-)\:\:\:\:\:\:(-)}}

\sf{By\:Sub \:-10d = -20}

\sf{\implies d = \dfrac{-20}{-10}}

\sf{\implies d = 2}

\sf{\underline{Putting\:the\:value\:of\:d\:in\:eq.(i)}}

\sf{2a+9d = 3}

\sf{2a + 9\times2 = 3}

\sf{\implies 2a + 18 = 3}

\sf{\implies 2a = 3-18}

\sf{\implies 2a = -15}

\sf{\implies a = \dfrac{-15}{2}}

\sf{\implies a = -7.5}

Now,

a = -7.5

d = 2

A.P.:-

1st term

We know,

\sf{a_n = a+(n-1)d}

\sf{a_1 = -7.5 + (1-1)\times 2}

\sf{\implies a_1 = -7.5 + 0}

\sf{\implies a_1 = -7.5}

2nd term,

\sf{a_2 = -7.5 + (2-1)\times2}

\sf{\implies a_2 = -7.5 + 1\times2}

\sf{\implies a_2 = -7.5 + 2}

\sf{\implies a_2 = -5.5}

3rd term,

\sf{a_3 = -7.5 + (3-1)\times2}

\sf{\implies a_3 = -7.5 + 2\times2}

\sf{\implies a_3 = -7.5 + 4}

\sf{\implies a_3 = -3.5}

Therefore,

A.P. = -7.5, -5.5, -3.5, .......

Similar questions