Math, asked by dasrijanaghosh, 15 days ago

The sum is shown in the picture
(PROVE LHS = RHS)

Attachments:

Answers

Answered by anindyaadhikari13
12

\textsf{\large{\underline{Solution}:}}

We have to prove:

\sf\implies \sqrt[\sf ab]{\dfrac{\sf x^{a}}{\sf x^{b}}}\cdot \sqrt[\sf bc]{\dfrac{\sf x^{b}}{\sf x^{c}}}\cdot \sqrt[\sf ac]{\dfrac{\sf x^{c}}{\sf x^{a}}}=1

Taking LHS, we get:

\sf= \sqrt[\sf ab]{\dfrac{\sf x^{a}}{\sf x^{b}}}\cdot \sqrt[\sf bc]{\dfrac{\sf x^{b}}{\sf x^{c}}}\cdot \sqrt[\sf ac]{\dfrac{\sf x^{c}}{\sf x^{a}}}

As we know that:

\sf\implies \dfrac{x^{a}}{x^{b}}=x^{a-b}

We get:

\sf= \sqrt[\sf ab]{\sf x^{a-b}}\cdot \sqrt[\sf bc]{\sf x^{b-c}}\cdot \sqrt[\sf ac]{\sf x^{c-a}}

We can also write it as:

\sf= x^{\dfrac{a-b}{ab}}\cdot x^{\dfrac{b-c}{bc}}\cdot x^{\dfrac{c-a}{ac}}

We know that:

\sf\implies x^{a}\cdot x^{b}=x^{a+b}

We get:

\sf= x^{\bigg(\dfrac{a-b}{ab}+\dfrac{b-c}{bc}+\dfrac{c-a}{ac}\bigg)}

\sf= x^{\bigg(\dfrac{c(a-b)+a(b-c)+b(c-a)}{abc}\bigg)}

\sf= x^{\bigg(\dfrac{ac-bc+ab-ac+bc-ab}{abc}\bigg)}

\sf= x^{\bigg(\dfrac{0}{abc}\bigg)}

\sf= x^{0}

\sf=1

We observe that LHS = RHS..!!

Hence Proved.

\texttt{\textsf{\large{\underline{Additionals}:}}}

 \sf 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \sf 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\sf 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \sf4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \sf5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \sf6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \sf7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \sf8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Answered by AwesomeBoy
1

We have to prove that,

 \large \bf \sqrt[ab]{ \frac{ {x}^{a} }{ {x}^{b} } } . \sqrt[bc]{ \frac{ {x}^{b} }{ {x}^{c} } } . \sqrt[ca]{ \frac{ {x}^{c} }{ {x}^{a} } } = 1

LHS -

Using formula,

 \frac{ {x}^{m} }{ {x}^{n} }  =  {x}^{m - n}

We get,

 \bf \sqrt[ab]{ {x}^{a - b} } . \sqrt[bc]{ {x}^{bc} } . \sqrt[ca]{ {x}^{c - a} } \\

Now, we use the formula,

 \sqrt[m]{ {x}^{n} }  =  {x}^{ \frac{n}{m} }

Then,

 \bf {x}^{ \frac{a - b}{ab} } . { x }^{ \frac{b - c}{bc} } . {x}^{ \frac{c - a}{ca} }  \\

Using formula,

  {x}^{m}  \times  {x}^{n}  =  {x}^{m + n}

We can write,

  \bf{x}^{ \frac{a - b}{ab}  +  \frac{b - c}{bc}  +  \frac{c - a}{ca} }  \\

 =  >  \bf {x}^{ \small( \frac{c(a - b) + a(b - c) + b(c - a)}{abc} \small) }  \\  \\  =  >  \bf {x}^{ (\frac{ca - bc + ab - ac + bc - ab}{abc} )}  \\  \\  =  >  \bf {x}^{ \frac{0}{abc} }  \\  \\  \bf =  >  {x}^{0}  = 1

=> LHS = RHS

Hence proved.

Hope it helps.

Similar questions