Math, asked by maahitejani13, 3 months ago

the sum measure of the angles of a regular polygon is 14 right angles. which of the following could be the ratio of the interior angle and extorior angle of the polygon:-\\
7:2
5:3
5:2
7:3

Answers

Answered by mathdude500
1

\begin{gathered}\Large{\bold{\blue{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1). \: \boxed{\pink{\tt \:Sum  \: of \:  angles = \: (n - 2) \times 180}}

(2). \: \boxed{ \pink{\tt \:  Exterior \:  angle = \dfrac{360}{number \: of \: sides} }}

(3). \: \boxed{ \pink{\tt \: Exterior \:  angle \:  +  \: Interior \:  angle \:  = 180 }}

\large\underline\purple{\bold{Solution :-  }}

According to statement,

  • The sum measure of the angles of a regular polygon is 14 right angles.

  • Let number of sides of regular polygon be 'n'

So,

  • We know that

\rm :\implies\:\tt \:Sum  \: of \:  angles = \: (n - 2) \times 180

\rm :\implies\:14 \times 90 = (n - 2) \times 180

\rm :\implies\:7 = n - 2

\rm :\implies \boxed{ \blue{ \bf\:n \:  =  \: 9}}

So,

  • Exterior angle of a regular polygon is given by

\rm :\implies\:Exterior  \: angle \:  = \dfrac{360}{n}

\rm :\implies\:Exterior  \: angle = \dfrac{360}{9}

\rm :\implies \boxed{ \red{ \tt{\:Exterior  \: angle \:  =  \: 40}}}

Now,

  • Interior Angle of a regular polygon is given by

\rm :\implies\:Exterior  \: angle + Interior  \: angle = 180

\rm :\implies\:40 + Interior  \: angle = 180

\rm :\implies\:Interior \:  angle = 180 - 40

\rm :\implies \boxed{ \green{ \bf \: \:Interior \:  angle \:  =  \: 140}}

Hence,

\rm :\implies\:Interior \:  angle : Exterior  \: angle

\rm :\implies\:140 : 40

\bf\implies \: \boxed{ \green{ \bf \: 7 : 2}}

Similar questions