Math, asked by deepa7245, 1 year ago

the sum of 1 + 2/5 + 3/25 + 4/125 + ...... upto nterms is​

Attachments:

Answers

Answered by sanjeevk28012
1

Given :

The series as 1 + \dfrac{2}{5 } + \dfrac{3}{25} + \dfrac{4}{125} +  ............. up to n terms

To Find :

The sum of  1 + \dfrac{2}{5 } + \dfrac{3}{25} + \dfrac{4}{125} +  ............. up to n terms

Solution :

S = 1 + \dfrac{2}{5 } + \dfrac{3}{25} + \dfrac{4}{125} +  ............. up to n terms           ............1

\dfrac{S}{5}  = \dfrac{1}{5} +  \dfrac{2}{25 } + \dfrac{3}{125} + \dfrac{4}{625} +  ............. up to n terms            ...........2

Subtracting eq 2 from eq 1

i.e  S - \dfrac{S}{5}  = [  1 + \dfrac{2}{5 } + \dfrac{3}{25} + \dfrac{4}{125} +  ............. up to n terms ] - [  \dfrac{1}{5} +  \dfrac{2}{25 } + \dfrac{3}{125} + \dfrac{4}{625} +  ............. up to n terms ]

Or,   \dfrac{4S}{5}  = 1 +  [ (\dfrac{2}{5}  - \dfrac{1}{5} ) + ( \dfrac{3}{25}  - \dfrac{2}{25} ) + ( \dfrac{4}{125} - \dfrac{3}{125} ) +  ........... ]

Or,  \dfrac{4S}{5}  = 1 + [ \dfrac{1}{5} + \dfrac{1}{25}+\dfrac{1}{125}  + ............ ]

Now, \dfrac{1}{5} + \dfrac{1}{25}+\dfrac{1}{125}  + ............  is in Geometric progression sum

So,  \dfrac{4S}{5}  = 1 + [ \dfrac{\dfrac{1}{5} }{1-\dfrac{1}{5} } ]

Or,  \dfrac{4S}{5}  = 1 + ( \dfrac{\dfrac{1}{5} }{\dfrac{4}{5} } )

Or,  \dfrac{4S}{5}  = 1 + \dfrac{1}{4}

Or,  \dfrac{4S}{5}  =  \dfrac{5}{4}

∴      S = \dfrac{25}{16}

Hence, The sum of given series is \dfrac{25}{16}  .  Answer

Similar questions