The sum of 2 natural numbers is 28 and their product is 192. Find the number.
Answers
Answered by
2
Sum of two natural numbers=28
Product=192
So, let the numbers be x and y
x +y=28
x=28-y ------(1)
xy=192 -------(2)
(28-y)(y)=192
28y-y²=192
28y -y²-192= 0
y²-28y+192=0
y²-(16+12)y+192=0
y²-16y-12y+192=0
y(y-16)-12(y-16)=0
(y-16)(y-12)
y-16=0
y=16,12
Thus 16 is x and 12 is y or vice versa...
Hope it helps☺☺
Answered by
3
Holla ^_^
☸ Required Answer is ⬇ ⬇⬇ ⬇
⭐ let the numbers be x nd y .
A.T.Q
➡ x+y = 28 ......... (i)
➡. xy = 192
x = 192/y
Put x = 192/y in eq. (i)
192/y + y =28
192+y² / y = 28
192+y² = 28y
y² - 28y + 192
y² - 16y - 12y +192
y (y-16) -12(y-16)
(y-16) (y-12)
➡ y = 16 or y = 12
Putting values of y in eq (i)
➡ x = 12 or x = 16 .
Vielen Dank ♥
☸ Required Answer is ⬇ ⬇⬇ ⬇
⭐ let the numbers be x nd y .
A.T.Q
➡ x+y = 28 ......... (i)
➡. xy = 192
x = 192/y
Put x = 192/y in eq. (i)
192/y + y =28
192+y² / y = 28
192+y² = 28y
y² - 28y + 192
y² - 16y - 12y +192
y (y-16) -12(y-16)
(y-16) (y-12)
➡ y = 16 or y = 12
Putting values of y in eq (i)
➡ x = 12 or x = 16 .
Vielen Dank ♥
Similar questions