Math, asked by gn476138, 11 months ago

the sum of 3 numbers in an AP is 12 and their product is 48. find those numbers

Answers

Answered by Anonymous
15

Given :

  • The sum of 3 numbers in an AP is 12.
  • The product of the numbers is 48.

To Find :

  • The terms in AP.

Solution :

Let the first term be(a-d)

Let the second term be a

Let the third term be (a+d)

Case 1 :

The three terms adds up to 12.

Equation :

\longrightarrow \sf{(a-d)+(a)+(a+d)\:=\:12}

\longrightarrow \sf{a-d+a+a+d =12}

\longrightarrow \sf{3a=12}

\longrightarrow \sf{a=\dfrac{12}{3}}

\longrightarrow \sf{a=4\:\:\:(1)}

Case 2 :

Product of these 3 terms is 48.

Equation :

\longrightarrow \sf{(a-d)(a)(a+d)=48}

\longrightarrow \sf{(4-d)(4)(4+d)=48}

\bold{\big[From\:equation\:(1)\:a\:=\:4\big]}

\longrightarrow \sf{4(4-d)(4+d)=48}

\longrightarrow \sf{(16-4d)(4+d)=48}

\longrightarrow \sf{16(4+d)-4d(4+d)=48}

\longrightarrow \sf{64+16d-16d-4d^2=48}

\longrightarrow \sf{64-4d^2=48}

\longrightarrow \sf{-4d^2=48-64}

\longrightarrow \sf{-4d^2=-16}

\longrightarrow \sf{d^2=\dfrac{-16}{-4}}

\longrightarrow \sf{d^2=\dfrac{16}{4}}

\longrightarrow \sf{d^2=4}

\longrightarrow \sf{d=\sqrt{4}}

\longrightarrow \sf{d=\:\pm\:2}

Now, when d = 2, let's form the AP.

\large{\boxed{\sf{First\:Term\:=\:(a-d)\:=\:4-2\:=\:2}}}

\large{\boxed{\sf{Second\:Term\:=\:t_2\:=\:a\:+\:d\:=\:2\:+2\:=\:4}}}

\large{\boxed{\sf{Third\:Term\:=\:t_3\:=\:t_2\:+\:d\:=\:4\:+\:2\:=\:6}}}

When, d = - 2,

\large{\boxed{\sf{First\:Term\:=\:(a-d)\:=\:4-(-2)\:=\:4+2=6}}}

\large{\boxed{\sf{Second\:Term\:=\:t_2\:=\:a\:+\:d\:=\:2\:+2\:=\:4}}}

\large{\boxed{\sf{Third\:Term\:=\:t_3\:=\:t_2\:+\:d\:=\:4\:+\:(-2)\:=\:4-2=2}}}

Similar questions