the sum of 3 numbers in ap is 12 and the sum their cubes is 288 . find the numbers
Answers
Answered by
10
Hey ❗
________________________________________________
↪Let the numbers be a , a+ d , a-d
↪a + a - d + a + d = 12
↪3a = 12
↪a = 4
↪According to the question !!
↪a ^3 + (a + d) ^3 + (a - d)^3 = 288
↪Now using the identies and by putting the values of a we will get
↪24 d^2 = 288 - 192
↪24 d^2 = 96
↪d^2 = 96 / 24
↪d^2 = 4
↪d = √4
↪d = +2
↪Hence for d = +2
↪a = 4 - d
↪a = 4 +2
↪a = 2
↪For d = -2
↪a = 4 - d
↪a = 4 - (-2)
↪a = 4 + 2
↪a = 6
↪So the numbers are 6 , 4 & 2
_________________________________________________
________________________________________________
↪Let the numbers be a , a+ d , a-d
↪a + a - d + a + d = 12
↪3a = 12
↪a = 4
↪According to the question !!
↪a ^3 + (a + d) ^3 + (a - d)^3 = 288
↪Now using the identies and by putting the values of a we will get
↪24 d^2 = 288 - 192
↪24 d^2 = 96
↪d^2 = 96 / 24
↪d^2 = 4
↪d = √4
↪d = +2
↪Hence for d = +2
↪a = 4 - d
↪a = 4 +2
↪a = 2
↪For d = -2
↪a = 4 - d
↪a = 4 - (-2)
↪a = 4 + 2
↪a = 6
↪So the numbers are 6 , 4 & 2
_________________________________________________
princejuhi:
great answer
Similar questions